Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUžupytė, Rūta-
dc.contributor.authorKrilavičius, Tomas-
dc.contributor.authorNavickas, R-
dc.contributor.authorŠatrauskienė, A-
dc.description.abstractThe metabolic syndrome (MetS) is associated with increased risk for cardiovascular disease. The detection and treatment of the underlying factors of the metabolic syndrome have a significant influence on the reduction of the cardiovascular disease. In this study, we analyze relations between MetS components and RNA molecules (microRNAs) regulating gene expression at the posttranscriptional level, in order to determine the predictive value of different microRNAs for subjects with metabolic syndrome. We apply correlation and linear regression to analyze the relationship between microRNAs and selected arterial markers. Logistic regression models were used to explore the statistical relationship between microRNAs and categorical variables. Results show that statistically significant linear relationship exists between arterial markers and several microRNAs, however, the observed relationship is very weak (<0.25). Since cardiovascular diseases are usually multifactorial diseases, caused by various mechanisms, it is more likely, that the combination of microRNAs will have stronger predictional or diagnostic power. Moreover, it is possible that more valuable results can be obtained by analyzing relations between microRNAs and binary variable determining the absence/existence of metabolic syndrome. Hence, we plan to use canonical correlation analysis to investigate linear combinations of microRNAs which have a maximum correlation with arterial markersen
dc.description.sponsorshipBaltijos pažangių technologijų institutas-
dc.description.sponsorshipBaltijos pažangių technologijų institutas, Vilnius-
dc.description.sponsorshipTaikomosios informatikos katedra-
dc.description.sponsorshipVilniaus universitetas-
dc.description.sponsorshipVytauto Didžiojo universitetas-
dc.format.extentp. 60-61-
dc.relation.ispartofData analysis methods for software systems : 8th international workshop, Druskininkai, Lithuania, December 1-3, 2016 : [abstracts book]. Vilnius : Vilnius university Institute of data science and digital technologies, 2016-
dc.subject.classificationKonferencijų tezės nerecenzuojamuose leidiniuose / Conference theses in non-peer-reviewed publications (T2)-
dc.subject.otherInformatika / Informatics (N009)-
dc.titleAn exploratory enalysis of the relation between metabolic syndrome factors and microRNA dataen
dc.typeconference paper-
local.object{"source": {"code": "vdu", "handle": "22214"}, "publisher": {"other": ["Vilnius university Institute of data science and digital technologies"], "list": false}, "db": {"clarivate": false, "scopus": false, "list": false}, "isbn": ["9789986680611"], "code": "T2", "subject": ["N009"], "country": "LT", "language": "en", "area": "N", "original": true, "pages": 2, "sheets": 0.143, "timestamp": "20181211103651.0", "account": {"year": 2016, "late": false}, "na": 4, "nip": 0, "affiliation": [{"contribution": 0.25, "aip": 2, "country": ["LT"], "rel": "aut", "org": [{"create": false, "contribution": 0.125, "name": "Baltijos pažangių technologijų institutas", "id": "301846141"}, {"create": false, "contribution": 0.125, "name": "Vilniaus universitetas", "id": "211950810"}], "id": "1F65C8B58B8FE35A46920C8613C49D53", "lname": "Juozaitienė", "fname": "Rūta", "status": "1", "orcid": "0000-0001-6175-0583", "name": "Užupytė, Rūta"}, {"contribution": 0.25, "aip": 2, "country": ["LT"], "rel": "aut", "org": [{"create": true, "contribution": 0.125, "name": "Vytauto Didžiojo universitetas", "id": "111950396", "level": "0", "type": "uni", "research": "1", "status": "1", "unit": {"name": "Informatikos fakultetas", "id": "04", "level": "1", "type": "fak", "research": "1", "status": "1", "unit": {"name": "Taikomosios informatikos katedra", "id": "0401", "level": "2", "type": "kat", "research": "1", "status": "1"}}}, {"create": false, "contribution": 0.125, "name": "Baltijos pažangių technologijų institutas, Vilnius", "id": "301846141"}], "id": "DD5A5F9F9ADFA0BC37D24E1184ED5391", "lname": "Krilavičius", "fname": "Tomas", "status": "1", "name": "Krilavičius, Tomas"}, {"contribution": 0.25, "aip": 1, "country": ["LT"], "rel": "aut", "org": [{"create": false, "contribution": 0.25, "name": "Vilniaus universitetas", "id": "211950810"}], "lname": "Navickas", "fname": "R", "status": "0", "name": "Navickas, R"}, {"contribution": 0.25, "aip": 1, "country": ["LT"], "rel": "aut", "org": [{"create": false, "contribution": 0.25, "name": "Vilniaus universitetas", "id": "211950810"}], "lname": "Šatrauskienė", "fname": "A", "status": "0", "name": "Šatrauskienė, A"}]}-
item.fulltextWith Fulltext- fakultetas- informatikos katedra-
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications
Files in This Item:
marc.xml7.04 kBXMLView/Open

MARC21 XML metadata

Show simple item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.