Please use this identifier to cite or link to this item:
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Ekologija ir aplinkotyra / Ecology and environmental sciences (N012)
Author(s): Gruzieva, Olena;Xu, Cheng-Jian;Yousef, Paul;Relton, Caroline;Merid, Simon Kebede;Breton, Carrie V;Gao, Lu;Volk, Heather E;Feinberg, Jason I;Ladd-Acosta, Christine;Bakulski, Kelly;Auffray, Charles;Lemonnier, Nathanaël;Plusquin, Michelle;Ghantous, Akram;Herceg, Zdenko;Nawrot, Tim S;Pizzi, Costanza;Richiardi, Lorenzo;Rusconi, Franca;Vineis, Paolo;Kogevinas, Manolis;Felix, Janine F;Duijts, Liesbeth;Dekker, Herman T. den;Jaddoe, Vincent W. V;Ruiz, José L;Bustamante, Mariona;Antó, Josep Maria;Sunyer, Jordi;Vrijheid, Martine;Gutzkow, Kristine B;Gražulevičienė, Regina;Hernandez-Ferrer, Carles;Annesi-Maesano, Isabella;Lepeule, Johanna;Bousquet, Jean;Bergström, Anna;Kull, Inger;Söderhäll, Cilla;Kere, Juha;Gehring, Ulrike;Brunekreef, Bert;Just, Allan C;Wright, Rosalind J;Peng, Cheng;Gold, Diane R;Kloog, Itai;DeMeo, Dawn L;Pershagen, Göran;Koppelman, Gerard H;London, Stephanie J;Baccarelli, Andrea A;Melén, Erik
Title: Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis
Is part of: Environmental health perspectives. Research Triangle Park, USA : National Institute of Environmental Health Sciences, 2019, Vol. 127, iss. 5
Extent: p. 1-12
Date: 2019
Keywords: Urban exposome;Built-environment exposures;Influence birth weight
Abstract: Background: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. Objectives: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter <10 (PM10) or <2.5μm (PM2.5) and DNA methylation in newborns and children. Methods: We meta-analyzed associations between exposure to PM10 (n=1,949) and PM2.5 (n=1,551) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. Results: Six CpGs were significantly associated [false discovery rate (FDR) <0.05] with prenatal PM10 and 14 with PM2.5 exposure. Two of the PM10-related CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant (p<0.05) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent PM10 exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal PM10 and or PM2.5 exposure, of which two PM10-related DMRs, including H19 and MARCH11, replicated in newborns. Conclusions: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes
Affiliation(s): Aplinkotyros katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml25.39 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Citations 1

checked on Feb 27, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.