Please use this identifier to cite or link to this item:
Type of publication: Straipsnis kitose duomenų bazėse / Article in other databases (S4)
Field of Science: Informatika / Informatics (N009)
Author(s): Karbauskaitė, Rasa;Kurasova, Olga;Dzemyda, Gintautas
Title: Selection of the number of neighbours of each data point for the locally linear embedding algorithm
Is part of: Information technology and control = Informacinės technologijos ir valdymas. Kaunas : Technologija, 2007, Vol. 36, no. 4
Extent: p. 359-364
Date: 2007
Keywords: Locally linear embedding;Dimensionality reduction;Manifold learning
Abstract: This paper deals with a method, called locally linear embedding. It is a nonlinear dimensionality reduction technique that computes low-dimensional, neighbourhood preserving embeddings of high dimensional data and attempts to discover nonlinear structure in high dimensional data. The implementation of the algorithm is fairly straightforward, as the algorithm has only two control parameters: the number of neighbours of each data point and the regularisation parameter. The mapping quality is quite sensitive to these parameters. In this paper, we propose a new way for selecting the number of the nearest neighbours of each data point. Our approach is experimentally verified on two data sets: artificial data and real world pictures
Affiliation(s): Matematikos ir informatikos institutas
Vilniaus pedagoginis universitetas
Vytauto Didžiojo universitetas
Švietimo akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml8 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

Citations 1

checked on Sep 12, 2020

Page view(s)

checked on Jan 7, 2020


checked on Jan 7, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.