Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/92536
Type of publication: Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Miškotyra / Forestry (A004)
Author(s): Ouerghemmi, Walid;Gadal, Sébastien;Mozgeris, Gintautas
Title: Urban vegetation mapping using hyperspectral imagery and spectral library
Is part of: IEEE international geoscience and remote sensing symposium (IGARSS) 2018, Jul 2018, Valencia, Spain: proceedings. New York: IEEE, 2018
Extent: p. 1632-1635
Date: 2018
Keywords: Hyperspectral;spectral library;band selection;regularization;vegetation mapping
ISBN: 9781538671504
Abstract: The development and expansion of urbanized areas around the cities, brings new challenging issues about the organization, the monitoring, and the distribution of green spaces within the cities (e.g. grass, trees, shrubs, etc.). Indeed, these spaces brings better life quality for population and preserve biodiversity. This study, aims to 1) investigate the feasibility of urban vegetation mapping by species using multiband imagery and spectral libraries and to 2) determine at what scale the mapping is reliable (e.g. trees scale, group of trees scale, high/short vegetation scale)
Internet: https://hal-amu.archives-ouvertes.fr/hal-01852849/document
Affiliation(s): Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml6.68 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

WEB OF SCIENCETM
Citations 5

5
checked on Feb 27, 2021

Page view(s)

56
checked on Mar 30, 2020

Download(s)

8
checked on Mar 30, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.