Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/91554
Type of publication: conference paper
Type of publication (PDB): Tezės kituose recenzuojamuose leidiniuose / Theses in other peer-reviewed publications (T1e)
Field of Science: Agronomija / Agronomy (A001)
Author(s): Lazauskas, Petras
Title: The law of the field crop performance (agrophytocenosis) productivity: the key to the future of agriculture
Is part of: Proceedings of 11th World Congress on Plant Biotechnology & Agriculture March 05-07, 2018 Paris, France. [Paris], 2018
Extent: p. 26
Date: 2018
Series/Report no.: (Advances in Crop Science and Technology vol. 6)
Abstract: The worldwide conventional deep soil tillage by annual ploughing has no proved theoretical fundamentals and is based only on the primitive sensual empirical experience. The greatest disadvantage of this method is its negative impact on the soil: its degradation, soil carbon material mineralization, rising emissions of carbon dioxide, and climate warming. According to the geo-botany theory the typical field crops stands are natural field plant communities (agrophytocenosis). Their cognition productivity therefore should be evaluated from the theoretical point of view. The soil tillage and weed control can been proved by the novel law of crop and weed communities’ performance. This law can be defined as follows: Productivity of a typical field plant community (agrophytocenosis), including overall dry mass of crop and weeds, growing under identical conditions is relatively constant. In general, this phenomenon can be described by the following equation: A=Y+X b, where A signifies maximum productivity of the whole dry mass of the whole community; Y - crop dry mass yield under the existing growing conditions of the community; X - weed mass; b - yield depression rate, indicating the degree of yield increase or decrease when weed mass changes by one unit. Based on this finding we can predict that this novel field crop performance productivity law will theoretically and practically revolutionize the cognition of soil tillage and weed control. Consequently, in the nearest future, the soil tillage and weed control disciplines will adopt this theoretical background and modernize the traditional empirical basis of soil tillage technologies. New theoretical cognition will have to reject annual deep plough and apply shallow precise soil tillage. These means will mitigate soil degradation, reduce the amount of carbon dioxide emission into the environment, slow climate warming, and will save costs of the non-regenerative energy in agriculture
Internet: https://hdl.handle.net/20.500.12259/91554
Affiliation(s): Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml5.3 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

Page view(s)

32
checked on Jun 6, 2021

Download(s)

6
checked on Jun 6, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.