Please use this identifier to cite or link to this item:
Type of publication: Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Miškotyra / Forestry (A004)
Author(s): Ouerghemmi, Walid;Gadal, Sébastien;Mozgeris, Gintautas;Jonikavičius, Donatas;Weber, Christiane
Title: Urban objects classification by spectral library: Feasibility and applications
Is part of: Jurse 2017 : 2017 Joint Urban Remote Sensing Event : proceedings of a meeting held 6-8 March 2017, Dubai, United Arab Emirates. New York, NY : IEEE Press, 2017
Extent: p. 371-375
Date: 2017
Note: ISSN 2334-0932
Keywords: Correlation;Hyperspectral imaging;Asphalt;Urban areas;Metals;Libraries
ISBN: 9781509058082
Abstract: Objects recognition in urban environment using multiband imagery is a difficult process, implying the use of elaborated and complex image processing methods, which are used to enhance the detection efficiency. The urban mosaics are characterized by multiple materials (e.g. manmade, urban vegetation, bare soil, transport infrastructure, etc.), which are combined together to form a complex patchwork. This study aims to take advantage of the multiband imagery, to assess the feasibility degree of the urban objects detection, and to explore some of the applications related to the multiband hyperspectral imagery classification
Affiliation(s): Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml8.12 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Citations 5

checked on Feb 27, 2021

Page view(s)

checked on Mar 31, 2020


checked on Mar 31, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.