Please use this identifier to cite or link to this item:
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Matematika / Mathematics (N001);Miškotyra / Forestry (A004)
Author(s): Rupšys, Petras
Title: New insights into tree height distribution based on mixed effects univariate diffusion processes
Is part of: PLoS One [elektroninis išteklius] San Francisco : Public Library of Science, 2016, vol. 11, iss. 12
Extent: p. 1-25
Date: 2016
Abstract: The aim of this paper is twofold: to introduce the mathematics of stochastic differential equations (SDEs) for forest dynamics modeling and to describe how such a model can be applied to aid our understanding of tree height distribution corresponding to a given diameter using the large dataset provided by the Lithuanian National Forest Inventory (LNFI). Tree heightdiameter dynamics was examined with Ornstein-Uhlenbeck family mixed effects SDEs. Dynamics of a tree height, volume and their coefficients of variation, quantile regression curves of the tree height, and height-diameter ratio were demonstrated using newly developed tree height distributions for a given diameter. The parameters were estimated by considering a discrete sample of the diameter and height and by using an approximated maximum likelihood procedure. All models were evaluated using a validation dataset. The dataset provided by the LNFI (2006±2010) of Scots pine trees is used in this study to estimate parameters and validate our modeling technique. The verification indicated that the newly developed models are able to accurately capture the behavior of tree height distribution corresponding to a given diameter. All of the results were implemented in a MAPLE symbolic algebra system
Affiliation(s): Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml6.81 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Citations 1

checked on Feb 27, 2021

Page view(s)

checked on Dec 10, 2020


checked on Dec 10, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.