Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/87971
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRupšys, Petras-
dc.coverage.spatialJP-
dc.date.accessioned2019-05-17T23:25:52Z-
dc.date.available2019-05-17T23:25:52Z-
dc.date.issued2015-
dc.identifier.issn13416979-
dc.identifier.otherVDU02-000049558-
dc.identifier.urihttp://link.springer.com/article/10.1007/s10310-014-0454-1-
dc.description.abstractHeight–diameter modeling is most often performed using non-linear regression models based on ordinary differential equations. In this study, new models of tree height dynamics involving a stochastic differential equation and mixed-effects parameters are examined. We use a stochastic differential equation to describe the dynamics of the height of an individual tree. The first model is defined by a Gompertz shape stochastic differential equation. The second Gompertz shape stochastic differential equation model with a threshold parameter can be considered an extension of the three-parameter stochastic Gompertz process through the addition of a fourth parameter. The parameters are estimated through discrete sampling of diameter and height and through the maximum likelihood procedure. We use data from tropical Atlantic moist forest trees to validate our modeling technique. The results indicate that our models are able to capture tree height behavior quite accurately. All the results are implemented in the MAPLE symbolic algebra systemen
dc.description.sponsorshipVytauto Didžiojo universitetas-
dc.description.sponsorshipŽemės ūkio akademija-
dc.format.extentp. 9-17-
dc.language.isoen-
dc.relation.ispartofTokyo : Springer Japan, 2015, Vol. 20, iss. 1-
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)-
dc.relation.isreferencedbySpringerLINK-
dc.subjectConditional density functionen
dc.subjectDiameteren
dc.subjectHeighten
dc.subjectStochastic differential equationen
dc.subjectThreshold parameteren
dc.subject.classificationStraipsnis Clarivate Analytics Web of Science / Article in Clarivate Analytics Web of Science (S1)-
dc.subject.otherMatematika / Mathematics (N001)-
dc.subject.otherMiškotyra / Forestry (A004)-
dc.titleHeight–diameter models with stochastic differential equations and mixed-effects parametersen
dc.typeresearch article-
dc.identifier.doihttps://doi.org/10.1007/s10310-014-0454-1-
dc.identifier.isiWOS:000348399200002-
dcterms.bibliographicCitation26-
dc.date.updated2020-03-02T11:30Z-
local.object{"source": {"code": "vdu", "handle": "49558"}, "publisher": {"name": "Springer", "list": true}, "db": {"clarivate": true, "scopus": false, "list": true}, "issn": ["1341-6979"], "doi": "10.1007/s10310-014-0454-1", "code": "S1", "subject": ["N001", "A004"], "url": ["http://link.springer.com/article/10.1007/s10310-014-0454-1"], "country": "JP", "language": "en", "area": "A", "original": true, "pages": 9, "sheets": 0.643, "timestamp": "20200302113047.0", "account": {"year": 2015, "late": false}, "na": 1, "nip": 0, "affiliation": [{"contribution": 1, "aip": 1, "country": ["LT"], "rel": "aut", "org": [{"create": true, "contribution": 1, "name": "Vytauto Didžiojo universitetas", "id": "111950396", "level": "0", "type": "uni", "research": "1", "status": "1", "unit": {"name": "Žemės ūkio akademija", "id": "09", "level": "1", "type": "aka", "research": "1", "status": "1"}}], "id": "C686BD4C95D5980076BACB5891D90ECB", "lname": "Rupšys", "fname": "Petras", "status": "1", "name": "Rupšys, Petras"}]}-
local.typeS-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptMiškų ir ekologijos fakultetas-
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications
Files in This Item:
marc.xml6.78 kBXMLView/Open

MARC21 XML metadata

Show simple item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

WEB OF SCIENCETM
Citations 1

13
checked on Jun 6, 2021

Page view(s)

39
checked on Jun 6, 2021

Download(s)

6
checked on Jun 6, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.