Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/59640
Type of publication: research article
Type of publication (PDB): Straipsnis konferencijos medžiagoje kitose duomenų bazėse / Article in conference proceedings in other databases (P1c)
Field of Science: Filologija / Philology (H004)
Author(s): Kalinauskaitė, Danguolė
Title: Detecting information-dense texts: towards an automated analysis
Is part of: CEUR Workshop proceedings [electronic resource]: IVUS 2018, International conference on information technologies, Kaunas, Lithuania, 27 April, 2018. Aachen : CEUR-WS, 2018, Vol. 2145
Extent: p. 95-98
Date: 2018
Keywords: Lexical density;Information density;Latural language processing;Computational linguistics
Abstract: Determining information density has become a central issue in natural language processing. While information density is seen as too complex to measure globally, a study of lexical and syntactic features allows a comparison of information density between different texts or different text genres. This paper provides a part of methodology proposed for automatic analysis of information density based on lexical and syntactic levels of language
Internet: http://ceur-ws.org/Vol-2145/p17.pdf
Affiliation(s): Baltijos pažangių technologijų institutas
Lituanistikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml6.01 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

Page view(s)

24
checked on Mar 30, 2021

Download(s)

8
checked on Mar 31, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.