Please use this identifier to cite or link to this item:
Type of publication: Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Filologija / Philology (H004)
Author(s): Kalinauskaitė, Danguolė
Title: Detecting information-dense texts: towards an automated analysis
Is part of: CEUR Workshop proceedings [electronic resource]: IVUS 2018, International conference on information technologies, Kaunas, Lithuania, 27 April, 2018. Aachen : CEUR-WS, 2018, Vol. 2145
Extent: p. 95-98
Date: 2018
Keywords: Lexical density;Information density;Latural language processing;Computational linguistics
Abstract: Determining information density has become a central issue in natural language processing. While information density is seen as too complex to measure globally, a study of lexical and syntactic features allows a comparison of information density between different texts or different text genres. This paper provides a part of methodology proposed for automatic analysis of information density based on lexical and syntactic levels of language
Affiliation(s): Baltijos pažangių technologijų institutas
Humanitarinių mokslų fakultetas
Lituanistikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml5.33 kBXMLView/Open

MARC21 XML metadata

Show full item record

Page view(s)

checked on Nov 2, 2019


checked on Nov 2, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.