Use this url to cite publication: https://hdl.handle.net/20.500.12259/59640
Detecting information-dense texts: towards an automated analysis
Type of publication
Straipsnis konferencijos medžiagoje Scopus duomenų bazėje / Article in conference proceedings in Scopus database (P1a2)
Author(s)
Author | Affiliation | |||
---|---|---|---|---|
LT | Baltijos pažangių technologijų institutas | LT |
Title [en]
Detecting information-dense texts: towards an automated analysis
Is part of
CEUR Workshop proceedings [electronic resource]: IVUS 2018, International conference on information technologies, Kaunas, Lithuania, 27 April, 2018. Aachen : CEUR-WS, 2018, Vol. 2145
Date Issued
Date |
---|
2018 |
Publisher
Aachen : CEUR-WS
Is Referenced by
Extent
p. 95-98
Abstract (en)
Determining information density has become a central issue in natural language processing. While information density is seen as too complex to measure globally, a study of lexical and syntactic features allows a comparison of information density between different texts or different text genres. This paper provides a part of methodology proposed for automatic analysis of information density based on lexical and syntactic levels of language.
Type of document
type::text::journal::journal article::research article
Language
Anglų / English (en)
Coverage Spatial
Vokietija / Germany (DE)
ISSN (of the container)
1613-0073
Other Identifier(s)
VDU02-000023022
Access Rights
Apribota prieiga / Restricted Access
Journal | Cite Score | SNIP | SJR | Year | Quartile |
---|---|---|---|---|---|
CEUR Workshop Proceedings | 0.6 | 0.313 | 0.166 | 2018 | Q4 |