Please use this identifier to cite or link to this item:
Type of publication: Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Informatika / Informatics (N009)
Author(s): Mandravickaitė, Justina;Rimkutė, Erika;Krilavičius, Tomas
Title: Hybrid approach for automatic identification of Multi-Word Expressions in Lithuanian
Is part of: Human language technologies - the Baltic perspective : proceedings of the 7th international conference, Baltic HLT 2016, Riga / editors Inguna Skadiņa, Roberts Rozis. Amsterdam : IOS Press, 2016
Extent: p. 153-159
Date: 2016
Series/Report no.: (Frontiers in artificial intelligence and applications, Vol. 289 0922-6389)
Note: Knygos ISBN 978-1-61499-701-6 (online)
Keywords: Lithuanian language;Multiword Expressions;MWE identification
ISBN: 9781614997009
Abstract: Identification of MultiWord Expressions (MWE) is one of the most challenging problems in Computer Linguistic and Natural Language Processing. A number of techniques are used to solve this problem in different language, mostly English. However not all techniques and approaches can be directly transferred to Lithuanian. Hence, in this paper we experiment with automatic identification of bi-gram MWEs for Lithuanian, which is considered to be under-resourced in terms of lexical resources and availability or accuracy of special lexical tools (e.g., POS-taggers, parsers). We use a raw corpus and combination of lexical association measures and supervised machine learning, which was shown to perform well for English and some other languages. Using this approach we have reached 70.4% precision for identification of typical MWEs, 77.1% precision for non-typical MWEs as well as 60.0% and 81.6% precision for typical adjective + noun and noun + noun MWEs respectively
Affiliation(s): Baltijos pažangių technologijų institutas, Vilnius
Baltijos pažangiųjų technologijų institutas
Lituanistikos katedra
Taikomosios informatikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml9.23 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Citations 5

checked on Feb 27, 2021

Page view(s)

checked on Mar 5, 2020


checked on Mar 5, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.