Please use this identifier to cite or link to this item:
Type of publication: research article
Type of publication (PDB): Straipsnis konferencijos medžiagoje kitose duomenų bazėse / Article in conference proceedings in other databases (P1c)
Field of Science: Informatika / Informatics (N009);Informatikos inžinerija / Informatics engineering (T007)
Author(s): Mandravickaitė, Justina;Krilavičius, Tomas;Man, Ka Lok
Title: Automatic identification of multi-word expressions for Latvian and Lithuanian
Is part of: IMECS 2017 : Engineers and computer scientists: proceedings of the international multiconference, 2017, March 15-17, Hong Kong. Vol. 2. Hong Kong : Newswood Limited, 2017
Extent: p. 706-709
Date: 2017
Series/Report no.: (Lecture notes in engineering and computer science, 2078-0958)
Note: ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)
Keywords: Terms—hybrid approach;Lexical association measures;Machine learning;Multi-word expressions
ISBN: 9789881404770
Abstract: We discuss an experiment on automatic identification of bi-gram multiword expressions for Latvian and Lithuanian. As these languages are considered to be underresourced in terms of lexical resources and availability or accuracy of special lexical tools (e.g. POS-tagger, parser), our approach uses raw corpora and combination of lexical association measures and supervised machine learning. We have achieved 92,4% precision and 52,2% recall for Latvian and 95,1% precision and 77,8% recall - for Lithuanian
Affiliation(s): Baltijos pažangių technologijų institutas, Vilnius
Baltijos pažangiųjų technologijų institutas, Vilnius. |li
Taikomosios informatikos katedra
Vilniaus universitetas. |li
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.44 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.