Please use this identifier to cite or link to this item:
Type of publication: research article
Type of publication (PDB): Straipsnis Clarivate Analytics Web of Science / Article in Clarivate Analytics Web of Science (S1)
Field of Science: Biologija / Biology (N010)
Author(s): Kaya, Murat;Mulerčikas, Povilas;Sargin, Idris;Kazlauskaitė, Sonata;Baublys, Vykintas;Akyuz, Bahar;Bulut, Esra;Tubelytė-Kirdienė, Vaida
Title: Three-dimensional chitin rings from body segments of a pet diplopod species: characterization and protein interaction studies
Is part of: Materials science and engineering : C, biomimetic and supramolecular systems. Amsterdam : Elsevier science, 2016, Vol. 68
Extent: p. 716-722
Date: 2016
Keywords: 3D chitinas;Nanopluoštai;Nanoporos;Albuminas;Albumin;3D chitin;Nanofibres;Nanoporous
Abstract: Physicochemical characterization of new chitin isolates can provide valuable insights into designing of biomimetic materials. Chitin isolates with a definite three-dimensional (3D) structure can exhibit characteristics that distinguish them from other chitin specimens that are in form of powder or flakes without a definite and uniform shape. Herein, 3D chitin rings were produced from body segments of a diplopod (Archispirostreptus gigas) inhabiting tropical regions. This organism is cultured easily and can reach 38 cm in length, which makes it a suitable source for isolation of chitin. The chitin rings were characterized via TGA, FT-IR, SEM and XRD analyses. Enzymatic digestion test with chitinase demonstrated that chitin isolates had high purity (digestion rate: 97.4%). The source organism had high chitin content; 21.02 ± 2.23% on dry weight. Interactions of the chitin rings with bovine serum albumin (BSA) protein were studied under different conditions (pH: 4.0–8.0, chitin amount: 6–14 mg, contact time: 30–360 min, protein concentration: 0.2–1 mg/mL). The highest BSA adsorption was observed at pH 5.0 at 20 °C. The adsorption equilibrium data exhibited a better fit to Langmuir adsorption and the pseudo-first order kinetic models. The findings presented here can be useful for further studies aiming to develop biocompatible and nontoxic biomaterials
Affiliation(s): Biologijos katedra
Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml11.65 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Citations 5

checked on Apr 24, 2021

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.