Please use this identifier to cite or link to this item:
Type of publication: research article
Type of publication (PDB): Straipsnis konferencijos medžiagoje Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or Scopus DB conference proceedings (P1a)
Field of Science: Informatika / Informatics (N009)
Author(s): Vidugirienė, Aušra;Demčenko, Andriejus;Tamošiūnaitė, Minija
Title: Vehicle acceleration prediction using specific road curvature points
Is part of: ICINCO 2009 : 6th international conference on informatics in control, automation and robotics, Milan, Italy, July 2-5, 2009: proceedings. Vol. 2 : Robotics and automation. Setubal: INSTICC Press, 2009
Extent: p. 147-152
Date: 2009
Keywords: Human-like driving;Intelligent driver’s assistance;Longitudinal control;Curve-based parameters
ISBN: 9789896740009
Abstract: In the work vehicle acceleration prediction issue is discussed. Three types of parameters are used for prediction system input: CAN-bus parameters – speed and curvature, derived speed parameters and newly offered specific curve point parameters, denoting changes in a curve. The real road data was used for predictions. Road curvature segments were divided into single and S-type curves. Acceleration was predicted using artificial neural networks and look-up table. The look-up table method showed the best results with newly offered specific curve parameters
Affiliation(s): Informatikos fakultetas
Taikomosios informatikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml9.71 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.