Please use this identifier to cite or link to this item:
Type of publication: research article
Type of publication (PDB): Straipsnis konferencijos medžiagoje kitose duomenų bazėse / Article in conference proceedings in other databases (P1c)
Field of Science: Informatika / Informatics (N009)
Author(s): Kolodziejski, Christoph;Porr, Bernd;Tamošiūnaitė, Minija;Wörgötter, Florentin
Title: On the asymptotic equivalence between differential Hebbian and temporal difference learning using a local third factor
Is part of: Advances in neural information processing systems 21 : 22nd annual conference on neural information processing systems, Vancouver, British Columbia, Canada, December 8-11, 2008 : proceedings. Red Hook, NY : Curran, 2009
Extent: p. 857-864
Date: 2009
Keywords: Hebbian learning;Temporal difference;Third factor
ISBN: 9781605609492
Abstract: In this theoretical contribution we provide mathematical proof that two of the most important classes of network learning - correlation-based differential Hebbian learning and reward-based temporal difference learning - are asymptotically equivalent when timing the learning with a localmodulatory signal. This opens the opportunity to consistently reformulate most of the abstract reinforcement learning framework from a correlation based perspective that is more closely related to the biophysics of neurons
Affiliation(s): Taikomosios informatikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml8.07 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.