Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/47234
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Visuomenės sveikata / Public health (M004)
Author(s): Blužas, Juozas;Bastys, Algirdas;Gargasas, Liudas;Tamošiūnaitė, Minija;Kaminskienė, Svetlana;Matiukas, Arvydas;Urbonavičienė, Gražina;Jurkonis, Vidmantas;Vaišnys, Rimas
Title: Автоматический анализ кардиосигналов для диагностики ишемической болезни сердца
Other Title: Computer analysis of cardiological signals for diagnosis of ischemic heart disease
Is part of: Кардиология. Москва : МедиаСфера, 2004, т. 44, № 2
Extent: p. 8-10
Date: 2004
Keywords: Ischemic heart disease;Electrocardiogram;Computer analysis
Abstract: A new noninvasive method for early detection of ischemic heart disease based on singular value decomposition is introduced. The method automatically explores waveforms of an ECG by making projections of individual ECG leads onto axes formed by the first three components of the singular value decomposition performed for the whole group of ECGs, including cases with and without coronary artery lesions (460 ECGs). Detection of the presence of lesions is performed with 73% sensitivity and 83% specificity. Sensitivity and specificity become lower when specifying which coronary artery contains lesions: 69% and 77%, respectively, for the right coronary artery, 66% and 82%, respectively, for left anterior descending artery. 74% and 71%, respectively, for the left circumflex artery. The method is being developed so that it might be included into the programs of automatic ECG analysis, particularly for population studies
Internet: https://hdl.handle.net/20.500.12259/47234
Affiliation(s): Informatikos fakultetas
Kauno medicinos universiteto Kardiologijos institutas
Kauno technologijos universitetas
Taikomosios informatikos katedra
Vilniaus universitetas
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml9.84 kBXMLView/Open

MARC21 XML metadata

Show full item record

Page view(s)

134
checked on Dec 9, 2019

Download(s)

10
checked on Dec 9, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.