Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/46110
Type of publication: Straipsnis konferencijos medžiagoje kitose duomenų bazėse / Article in conference proceedings in other databases (P1c)
Field of Science: Filologija / Philology (H004)
Author(s): Gindiyeh, Mahmoud;Grigonytė, Gintarė;Haller, Johann;Avižienis, Algirdas
Title: Linguistically enhanced clustering of technical publications
Is part of: KMIS 2009 : proceedings of the international conference on knowledge management and information sharing, Madeira, 6 - 8 October, 2009, Portugal / ed. Kecheng Liu. Portugal : INSTICC, 2009
Extent: p. 324-327
Date: 2009
Keywords: Linguistic analysis;Information retrieval;Clustering
ISBN: 9789896740139
Abstract: Organizing documents and performing search is a common but not a trivial task in information systems. With the increasing number of documents, it is becoming crucial to automate these processes. Clustering is a solution for organizing large amount of documents. In this article we propose a method of improving document retrieval that was implemented in RKB Knowledge Base. Our method heavily relies on linguistic analysis, which aims to identify document specific noun phrases. We applay an adjusted hierarchical clustering algorithm for learning clusters of documents
Internet: https://hdl.handle.net/20.500.12259/46110
Affiliation(s): Humanitarinių mokslų fakultetas
Informatikos fakultetas
Kompiuterinės lingvistikos centras
Taikomosios informatikos katedra
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.24 kBXMLView/Open

MARC21 XML metadata

Show full item record

Page view(s)

132
checked on Dec 8, 2019

Download(s)

10
checked on Dec 8, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.