Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/42567
Type of publication: conference paper
Type of publication (PDB): Konferencijų tezės nerecenzuojamuose leidiniuose / Conference theses in non-peer-reviewed publications (T2)
Field of Science: Fizika / Physics (N002)
Author(s): Bertašienė, A;Dementjev, Aleksandr;Girdauskas, Valdas;Kazragytė, Renata
Title: Femtosekundinių pirmosios harmonikos impulsų spūdos toli nuo sinchronizmo sąlygų skaitinis modeliavimas
Other Title: Numerical modelling of compression of femtosecond first harmonics pulses at the conditions remote from the phase matching
Is part of: 36-oji Lietuvos nacionalinė fizikos konferencija : programa ir pranešimų tezės : Vilnius, 2005 m. birželio 16-18 d. Vilnius, 2005
Extent: p. 253-253
Date: 2005
Keywords: Antrosios harmonikos generacija;Impulsų spūda;Second harmonic generation;Pulses compression
ISBN: 9986928451
Abstract: This work presents the numerical analysis of the influence of the Kerr nonlinearity of the quadratically-nonlinear medium and the degree of the super-Gaussian distribution of the FF pulses to the duration, shape and the propagation factor of the FF pulses compressed to the maximum due to the cascaded nonlinearity and the group velocity dispersion. It was determined that a pulse with the initial duration of 120 fs and the initial Gaussian radial distribution is compressed almost twice, and it shortens at the beam center to almost 20 fs, and its propagation factor increases to 1.7-1.8
Internet: https://hdl.handle.net/20.500.12259/42567
Affiliation(s): Fizikos institutas
Vytauto Didžiojo universitetas
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.31 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

Page view(s)

9
checked on Mar 30, 2021

Download(s)

8
checked on Mar 31, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.