Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/36623
Type of publication: Straipsnis recenzuojamoje užsienio tarptautinės konferencijos medžiagoje / Article in peer-reviewed foreign international conference proceedings (P1d)
Field of Science: Informatika / Computer science (N009)
Author(s): Mandravickaitė, Justina;Krilavičius, Tomas
Title: Identification of multiword expressions for Latvian and Lithuanian: hybrid approach
Is part of: EACL 2017: 13th workshop on multiword expressions, April 4, 2017 Valencia, Spain: proceedings of the workshop. Stroudsburg : Association for Computational Linguistics, 2017
Extent: p. 97-101
Date: 2017
Note: This research was funded by a grant (No. LIP- 027/2016) from the Research Council of Lithuania
Keywords: Hybrid methods;Lexical association measures;Machines learning
ISBN: 9781945626487
Abstract: We discuss an experiment on automatic identification of bi-gram multiword expressions in parallel Latvian and Lithuanian corpora. Raw corpora, lexical association measures (LAMs) and supervised machine learning (ML) are used due to deficit and quality of lexical resources (e.g., POS-tagger, parser) and tools. While combining LAMs with ML is rather effective for other languages, it has shown some nice results for Lithuanian and Latvian as well. Combining LAMs with ML we have achieved 92,4% precision and 52,2% recall for Latvian and 95,1% precision and 77,8% recall for Lithuanian
Internet: https://hdl.handle.net/20.500.12259/36623
https://eltalpykla.vdu.lt/handle/1/36623
Affiliation(s): Baltijos pažangių technologijų institutas, Vilnius
Baltijos pažangiųjų technologijų institutas
Informatikos fakultetas
Taikomosios informatikos katedra
Vilniaus universitetas
Vytauto Didžiojo universitetas
Appears in Collections:3. Konferencijų medžiaga / Conference materials
Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml6.34 kBXMLView/Open

MARC21 XML metadata

Show full item record

Page view(s)

198
checked on Dec 9, 2019

Download(s)

88
checked on Dec 9, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons