Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/34339
Type of publication: Article in conference proceedings in ISI Proceedings (P1a);Straipsnis konferencijos medžiagoje ISI Proceedings (P1a)
Field of Science: Informatika (N009);Computer science (N009)
Author(s): Krilavičius, Tomas;Mickevičius, Vytautas;Morkevičius, Vaidas
Title: Analysing voting behavior of the Lithuanian Parliament using cluster analysis and multidimensional scaling: technical aspects
Is part of: ECT-2014 : Electrical and control technologies : proceedings of the 9th international conference on electrical and control technologies, May 8-9, 2014, Kaunas, Lithuania. Kaunas : Technologija, 9 (2014)
Extent: p. 84-89
Date: 2014
Keywords: Multidimensional scaling;Clustering;Political science
Abstract: Rational models of electoral behavior emphasize the need of sufficient information for voters to make their decisions. Monitoring the behavior of a single politician is not easy to implement, not to mention of the whole parliament, since for the latter one must apply statistical methods designed for the analysis of large amounts of information. In this paper we propose methods and techniques for the analysis of voting behavior of the Lithuanian Parliament (Seimas) that allow for clearer identification and recognition of voting patterns of the Seimas. Votes of the last sessions of the 2008-2012 term of the Seimas (pre-election period) are analyzed employing cluster analysis. Also, multidimensional scaling is used to visualize the generated results. Results obtained using different vote coding methods and clustering techniques are compared in the paper, too
Internet: https://hdl.handle.net/20.500.12259/34339
https://hdl.handle.net/20.500.12259/34339
Affiliation(s): Taikomosios informatikos katedra
Kauno technologijos universitetas
Vytauto Didžiojo universitetas
Informatikos fakultetas
Appears in Collections:3. Konferencijų medžiaga / Conference materials
Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.79 kBXMLView/Open

MARC21 XML metadata

Show full item record

Page view(s)

82
checked on May 19, 2019

Download(s)

10
checked on May 19, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.