Please use this identifier to cite or link to this item:
Type of publication: research article
Type of publication (PDB): Straipsnis konferencijos medžiagoje kitose duomenų bazėse / Article in conference proceedings in other databases (P1c)
Field of Science: Informatika / Informatics (N009)
Author(s): Kulvičius, Tomas;Herzog, Sebastian;Lüddecke, Timo;Tamošiūnaitė, Minija;Wörgötter, Florentin
Title: One-shot multi-path planning for robotic applications using fully convolutional networks
Is part of: ICRA 2020 : IEEE international conference on robotics and automation, Paris, France, 31 May - 31 August, 2020: proceedings. New York : IEEE Press, 2020
Extent: p. 1460-1466
Date: 2020
Note: INSPEC Accession Number: 19986957
Keywords: Mokymas;Kelio planavimas;Robotas;Prognozuojantis algoritmas;Two dimensional displays;Three-dimensional displays;Robots;Path planning
ISBN: 9781728173962
Abstract: Path planning is important for robot action execution, since a path or a motion trajectory for a particular action has to be defined first before the action can be executed. Most of the current approaches are iterative methods where the trajectory is generated by predicting the next state based on the current state. Here we propose a novel method by utilising a fully convolutional neural network, which allows generation of complete paths even for several agents with one network prediction iteration. We demonstrate that our method is able to successfully generate optimal or close to optimal paths (less than 10% longer) in more than 99% of the cases for single path predictions in 2D and 3D environments. Furthermore, we show that the network is - without specific training on such cases - able to create (close to) optimal paths in 96% of the cases for two and in 84% of the cases for three simultaneously generated paths
Affiliation(s): Sistemų analizės katedra
Vytauto Didžiojo universitetas
Appears in Collections:3. Konferencijų medžiaga / Conference materials
Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml7.46 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats

CORE Recommender

Page view(s)

checked on May 1, 2021


checked on May 1, 2021

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons