Trikampio egzistavimas, kai žinomi trys jo elementai
Author | Affiliation | |
---|---|---|
Vilniaus universitetas | LT | |
Date | Volume | Start Page | End Page |
---|---|---|---|
2022 | 63 | 54 | 61 |
Trikampio egzistavimas, kai duoti trys jo elementai, kai kuriais atvejais yra sunkus uždavinys. Pavyzdžiui, Brokard‘o uždavinys apie trikampio egzistavimą [1], kai duotos trys jo pusiaukampinės, turi ilgą istoriją [3] ir išspręstas tik 1994 metais [10]. Šiame darbe nagrinėjami atvejai, kai trikampį nusakantys elementai yra kraštinės, kampai, aukštinės, pusiaukraštinės, pusiaukampinės, apibrėžto apie trikampį ir įbrėžto į trikampį apskritimų spinduliai, perimetras. Iš viso egzistuoja 186 skirtingi trikampio egzistavimo, žinant tris jo elementus, uždaviniai, iš kurių 116 atvejų yra gautos pakankamos egzistavimo sąlygos (kai kuriems pakankamos ir būtinos egzistavimo sąlygos), o trikampis nubraižomas skriestuvu ir liniuote. Likusių 70 uždavinių bendruoju atveju negalima nubrėžti skriestuvu ir liniuote. Autoriai išvardija tuos 70 uždavinių ir nurodo, kuriems jų yra gautos būtinos ir pakankamos egzistavimo sąlygos
The problem of the existence of a triangle with respect to three given elements in some cases can be very difficult. For example, Brokard's problem about the existence of a triangle, given its three bisectors [1], has a long history [3] and solved only in 1994 [10]. We include in the number of elements: three sides, three angles, three heights, three medians, three bisectors, radii of the circumscribed and inscribed circles, and perimeter. In total, there are 186 different problems of the existence of a triangle with three given elements and for 116 problems are given sufficient conditions (for some sufficient and necessary conditions of existence) when a triangle can be construct by a compass and a ruler, and the remaining 70 problems when it is impossible to construct a triangle by a compass and a ruler. The authors list these 70 problems and indicate for which of them the necessary and sufficient conditions for the uniqueness of the existence of a triangle with three prescribed elements have found