Publication: The Bergström-Grigelionis asymptotic expansions
cris.virtual.department | Matematikos ir statistikos katedra | |
cris.virtual.department | Vytauto Didžiojo universitetas | |
cris.virtualsource.author-orcid | 45775764-af40-49b9-84a1-0eb7471b3333 | |
cris.virtualsource.author-orcid | 8ce034a8-42cf-4bda-be00-3d4b56e566ba | |
cris.virtualsource.department | 45775764-af40-49b9-84a1-0eb7471b3333 | |
cris.virtualsource.department | 8ce034a8-42cf-4bda-be00-3d4b56e566ba | |
dc.contributor.author | Bikelis, Algimantas | |
dc.contributor.author | Padvelskis, Kazimieras | |
dc.coverage.spatial | US | |
dc.date.accessioned | 2018-10-06T22:17:30Z | |
dc.date.available | 2018-10-06T22:17:30Z | |
dc.date.issued | 2013 | |
dc.date.updated | 2020-03-12T15:35Z | |
dc.description.abstract | We consider a triangular array of independent identically distributed discrete random variables. We assume that the probability distribution of sums satisfies the necessary and sufficient conditions for the weak convergence to the compound Poisson distribution. The first known result (the case where random variables take only integer values) is due to B. Grigelionis, who estimated the convergence rate to the compound Poisson distribution. We extend the summation of random variables by including the variables taking discrete values and by using the Grigelionis ideas to obtain “lengthy” asymptotic expansions. These expansions are based on the well-known Bergström identity [H. Bergström, On asymptotic expansions of probability functions, Scand. Actuarial J., 34(1):1–33, 1951]. | en |
dc.description.sponsorship | Matematikos ir statistikos katedra / Department of Mathematics and Statistics | * |
dc.description.sponsorship | Informatikos fakultetas / Faculty of Informatics | * |
dc.description.sponsorship | Vytauto Didžiojo universitetas / Vytautas Magnus University | * |
dc.format.extent | p. 121-142 | |
dc.identifier.isi | WOS:000320046000001 | |
dc.identifier.other | VDU02-000013610 | |
dc.identifier.uri | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12259/49121 | |
dc.language.iso | en | |
dc.publisher | New York : Springer | |
dc.relation.ispartof | Lithuanian mathematical journal. New York : Springer, Vol. 53, no. 2 (2013) | |
dc.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
dc.relation.isreferencedby | MathSciNet | |
dc.relation.isreferencedby | VINITI | |
dc.relation.isreferencedby | Zentralblatt MATH (zbMATH) | |
dc.relation.isreferencedby | SpringerLink | |
dc.relation.isreferencedby | Scopus | |
dc.relation.issn | 0363-1672 | |
dc.rights | restricted access | * |
dc.subject | Random variable series | en |
dc.subject | Compound Poisson distribution | en |
dc.subject | Bergström identity | en |
dc.subject | Grigelionis asymptotic expansion | en |
dc.subject.classification | Straipsnis Web of Science ir Scopus duomenų bazėje / Article in Web of Science and Scopus database (S1) | |
dc.subject.other | Matematika / Mathematics (N001) | |
dc.title | The Bergström-Grigelionis asymptotic expansions | en |
dc.type | type::text::journal::journal article::research article | |
dcterms.bibliographicCitation | 11 | |
dcterms.subject | N | |
dspace.entity.type | Publication | |
local.relation.isreferencedby | Science Citation Index Expanded (Web of Science) | |
local.relation.isreferencedby | MathSciNet | |
local.relation.isreferencedby | VINITI | |
local.relation.isreferencedby | Zentralblatt MATH | |
local.relation.isreferencedby | SpringerLINK | |
local.relation.isreferencedby | Scopus | |
local.subject.classification | S1 | |
local.type | research article | |
localcerif.author.code | 111950396-0402 | |
localcerif.author.code | 111950243 | |
localcerif.author.country | LT | |
localcerif.author.country | LT | |
localcerif.pages | 22 | * |
localcerif.sco.citescore | 0.9 | |
localcerif.sco.hash | 843b6d668c04433d9ab3250a043a2493 | |
localcerif.sco.quartile | Q3 | |
localcerif.sco.sjr | 0.361 | |
localcerif.sco.snip | 0.619 | |
localcerif.sco.title | Lithuanian Mathematical Journal | |
localcerif.sco.year | 2013 | |
localcerif.wos.aif | 0.729 | |
localcerif.wos.aif-max | 0.729 | |
localcerif.wos.aif-max-scie | 0.729 | |
localcerif.wos.aif-min | 0.729 | |
localcerif.wos.aif-min-scie | 0.729 | |
localcerif.wos.aif-scie | 0.729 | |
localcerif.wos.aif-scie | 0.729 | |
localcerif.wos.aif-scie | 0.729 | |
localcerif.wos.av | 0.549 | |
localcerif.wos.av-scie | 0.549 | |
localcerif.wos.cat | 1 | |
localcerif.wos.cat-scie | 1 | |
localcerif.wos.hash | eb3023a66140774160512d2bf726f6ee | |
localcerif.wos.if | 0.4 | |
localcerif.wos.quartile | Q4 | |
localcerif.wos.quartile-scie | Q4 | |
localcerif.wos.title | Lithuanian Mathematical Journal | |
localcerif.wos.year | 2013 | |
oairecerif.author.affiliation | Matematikos ir statistikos katedra / Department of Mathematics and Statistics | |
oairecerif.author.affiliation | Vilniaus Gedimino technikos universitetas |