Please use this identifier to cite or link to this item:https://hdl.handle.net/20.500.12259/86813
Type of publication: Straipsnis Clarivate Analytics Web of Science ar/ir Scopus / Article in Clarivate Analytics Web of Science or / and Scopus (S1)
Field of Science: Transporto inžinerija / Transport engineering (T003)
Author(s): Labeckas, Gvidonas;Slavinskas, Stasys;Mažeika, Marius
Title: The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine
Is part of: Energy Conversion and Management. Oxford : Pergamon-Elsevier Science, Vol. 79 (2014)
Extent: p. 698-720
Date: 2014
Keywords: Diesel engine;Ethanol;Biodiesel;Combustion;Heat release;Comparative performance;Emissions;Smoke opacity
Abstract: The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on start of injection, autoignition delay, combustion and maximum heat release rate, engine performance efficiency and emissions of the exhaust when operating over a wide range of loads and speeds. The test results were analysed and compared with a base diesel engine running at the same air–fuel ratios of k = 5.5, 3.0 and 1.5 corresponding to light, medium and high loads. The same air–fuel ratios predict that the energy content delivered per each engine cycle will be almost the same for various ethanol–diesel–biodiesel blends that eliminate some side effects and improve analyses of the test results. A new approach revealed an important role of the fuel bound oxygen, which reflects changes of the autoignition delay more predictably than the cetane number does. The influence of the fuel oxygen on maximum heat release rate, maximum combustion pressure, NOx, CO emissions and smoke opacity of the exhaust is highly dependent on the air–fuel ratio and engine speed. Fuelled with blend E15B the diesel engine develops the brake thermal efficiency of 0.362, i.e. the same as a straight diesel running on slightly richer air–fuel mixture k = 1.5 at rated 2200 rpm speed. Adding of the ethanol to diesel fuel reduces the NOx and the HC emissions for richer combustible mixtures whereas the influence of a higher ethanol mass content on CO emissions and smoke opacity depends on the air–fuel ratio and engine speed
Internet: https://doi.org/10.1016/j.enconman.2013.12.064
Affiliation(s): Vytauto Didžiojo universitetas
Žemės ūkio akademija
Appears in Collections:Universiteto mokslo publikacijos / University Research Publications

Files in This Item:
marc.xml9.56 kBXMLView/Open

MARC21 XML metadata

Show full item record
Export via OAI-PMH Interface in XML Formats
Export to Other Non-XML Formats


CORE Recommender

WEB OF SCIENCETM
Citations 1

105
checked on Jan 17, 2021

Page view(s)

30
checked on Sep 13, 2019

Download(s)

2
checked on Sep 13, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.