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Abstract: Oil production forecasting is one of the essential processes for organizations and govern-
ments to make necessary economic plans. This paper proposes a novel hybrid intelligence time
series model to forecast oil production from two different oil fields in China and Yemen. This model
is a modified ANFIS (Adaptive Neuro-Fuzzy Inference System), which is developed by applying
a new optimization algorithm called the Aquila Optimizer (AO). The AO is a recently proposed
optimization algorithm that was inspired by the behavior of Aquila in nature. The developed model,
called AO-ANFIS, was evaluated using real-world datasets provided by local partners. In addition,
extensive comparisons to the traditional ANFIS model and several modified ANFIS models using
different optimization algorithms. Numeric results and statistics have confirmed the superiority of
the AO-ANFIS over traditional ANFIS and several modified models. Additionally, the results reveal
that AO is significantly improved ANFIS prediction accuracy. Thus, AO-ANFIS can be considered as
an efficient time series tool.

Keywords: ANFIS; Aquila Optimizer (AO); oil production; time series forecasting; Tahe oilfield

1. Introduction

Accurate forecasting of oil production is a significant and cumbersome task for
monitoring and improving oil reservoirs. While hydrocarbons usage constitutes the
largest share of the globe’s energy consumption in 2019, with over 58% world’s energy
consumption [1,2]. Therefore, oil production forecasting plays a crucial role in the life
cycle of oil reservoirs, including early resource evaluation and improving recovery. Si-
multaneously, various factors influence the hydrocarbon resources, including formation
heterogeneities, the complexity of fluid flow within the subsurface formation, reservoir
properties, and fluid properties that make the precise prediction of oil production more
cumbersome [3,4]. Three approaches are frequently used to establish the prediction of oil
production models in oil reservoirs. Numerical reservoir simulation (NRS) is considered
the optimal traditional means for forecasting oil production. NRS method relies on a nu-
merical model, which tends to achieve good performance and evaluate reservoir geological
heterogeneity [5,6]. Furthermore, the NRS models have some limitations, including being
time-consuming, cumbersome [7], and it requires constructing an accurate static model, his-
tory matching, and other dynamic model parameters. Furthermore, analytical techniques
are employed to compute various forms of wellbore flow rate adjustments. Depending on
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the reservoir heterogeneity, well structures complexity, and boundary conditions, some
hypotheses are essential for determining the analytical solution [8–10]. Moreover, the con-
ventional decline curve analysis (DCA) technique [11,12] can forecast the production rate
by evaluating the long-term hydrocarbon production data. The DCA approach employs
the empirical equations to match the historical production data with a model, including
harmonic, hyperbolic, and exponential models [13]. These models are perfect curves and
cannot consider the actual formation factors. Thus, it is challenging to ensure accurate
performance by employing DCA.

The use of a numerical simulation to predict oil production is a more reliable and ro-
bust technique. Its accuracy is based on the accuracy of static models and history matching
quality. However, it is troublesome to construct an accurate static model [11,14,15]. More-
over, the parameterization techniques of the static model and the integrating method
of objective components have a significant effect on history matching and reservoir
prediction [14–16]. Although multi-objective optimization can be determined, a perfect
history matching model leads to poor prediction [17]. Thus, the history matching approach
is formidable and requires a long time, which renders a lot of work [18].

The applications of deep learning (DL) and machine learning (ML) in the petroleum
industry have gained more concern [19], particularly in forecasting oil production [20,21],
forecasting of pressure-volume-temperature (PVT) properties [22,23], optimizing well
placement and oil production [24,25], the prediction of reservoir petrophysical properties,
including porosity and permeability [26,27], and oil spill detection [28]. Deep learning has
been incorporated into the petroleum industry with the remarkable development of deep
learning algorithms, enabling overcoming troublesome concerns in oilfields [21].

Several DL and ML methods were introduced for forecasting oil production [1,20,21].
For example, Sagheer et al. [29] introduced Long Short-Term Memory (LSTM) to predict
oil production time series. Fan et al. [1] proposed to incorporate autoregressive integrated
moving average (ARIMA) and LSTM to forecast oil production. In [30], an optimized
Random Vector Functional Link was introduced for time series forecasting. This model
was implemented for oil production in Tahe oilfield. Liu et al. [20] employed LSTM with
Ensemble Empirical Mode Decomposition (EEMD) to predict oil production.

One of the most efficient time series prediction models is the Adaptive Neuro Fuzzy
Inference System (ANFIS), which was employed for different forecasting problems [31–33].
In this paper, we improve a modified ANFIS model using a new metaheuristic optimization
algorithm called the Aquila Optimizer (AO) [34]. It belongs to a class of nature-inspired
optimization algorithms, which are motivated by the behavior of living organisms, such as
grey wolves [35], harris hawks [36], or red foxes [37]. The AO is inspired by the behavior of
Aquila in nature, and it showed superior performance in solving different optimization and
complex problems. In this paper, AO is applied to optimize ANFIS parameters to avoid
traditional ANFIS shortcomings. First, the AO works by generating a set of candidates
(solutions). Each one represents ANFIS parameter configurations. Then, each solution is
evaluated using the training set. Thereafter, the solution that has the smallest fitness value
is the best solution.

In this paper, AO-ANFIS is used on two real-world historical oil production datasets
from Masila oilfields in Yemen and Tahe oilfields in China. The evaluation experiments are
implemented using several performance measures, and extensive comparisons to several
models are also carried out. The main contribution of the current study is:

• A new modified ANFIS model, called AO-ANFIS, is proposed as a time series fore-
casting model for oil production.

• The AO algorithm to optimize ANFIS parameters to overcome the shortcomings
of ANFIS.

• We implement extensive comparisons to several models to verify the performance of
AO-ANFIS using two real-world datasets.

This paper is presented as: Section 2 summarizes several oil forecasting studies. The
backgrounds of applied methods are described in Section 3. The AO-ANFIS time series
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forecasting model is described in Section 4. Experiments and conclusion are presented in
Sections 5 and 6, respectively.

2. Related Work

In this section, we recap a list of relevant methods employed for oil production
forecasting. Abdullayeva et al. [38] established a hybrid model based on the integration
of a Convolutional Neural Network (CNN) and LSTM networks, called CNN-LSTM, to
forecast the oil production accurately. Calvette et al. [39] implemented a deep learning
algorithm in a proxy model to precisely duplicate the simulator by predicting the history
data of production. Fan et al. [1] proposed a hybrid model by incorporating the ARIMA
model and LSTM to consider the impact of manual operation and assess the benefit of
linearity and nonlinearity. Wang et al. [40] proposed a hybridization forecasting model
of the linear and non-linear to a modern predicting method in two stages. The first one,
by incorporating between the grey model of the non-linear with the mentalism idea to
establish non-linear metabolism grey model (NMGM). The second one by integrating the
established NMGM with ARIMA to develop the NMGM-ARIMA method. In [41], based
on pressure-rate datasets, an integration model between non-linear autoregressive (NARX)
and the LSTM was proposed to investigate synthetic datasets and contrast the findings of
forecasting pressure. Zhong et al. [42] proposed a deep learning proxy model to forecast
the fluid saturation and reservoir pressure during the water flooding in heterogeneous
reservoirs. Based on the recent development of deep learning, the coupled generative
adversarial network (Co-GAN) was employed to determine the distribution of multidomain
high-dimensional image data.

Wang et al. [43] introduced a novel equal probability gene expression programming
(EP-GEP) to eliminate the defects of the conventional Arps decline model in carbonate
reservoir during the production decline analysis. The outcomes of the EP-GEP model
show perfect forecasting accuracy with relative errors compared to the traditional methods.
Yan et al. [44] introduce time series data that can be examined with supervised algorithms
and the Internet of Things (IoT). The elucidation of the efficiency of forecasting oil produc-
tion techniques in steam flood scenarios was proposed. In addition, a 3% enhancement
in oil production was observed based on the established optimal steam distribution plan.
Singh et al. [45] proposed a novel approach that can forecast the gas hydrate saturation(Sh)
for any well utilizing various parameters, including bulk density, porosity, compressional
wave (P wave) velocity well-logs neural networks (NNs), or without any well-specific cali-
bration. The findings indicated that the accuracy of the established technique in forecasting
(Sh) was 83%.

Zanjani et al. [46] proposed various deep learning approaches, including Artificial
Neural Network (ANN), Support Vector Regression (SVR), and Linear Regression (LR), to
forecast the oil production. The findings indicate that all three approaches presented good
forecasting. However, ANN is considered the optimal approach. Liu et al. [47] proposed
forecasting oil production, which considers the trends and the correlations of oil production
data based on the LSTM approach. Alalimi et al. [30] established an integrated model of
Random Vector Functional Link (RVFL) and Spherical Search Optimizer (SSO) to forecast
oil production from the Taha oilfield. The proposed model (SSO-RVFL) was evaluated
with comparisons to several optimization methods. Sagheer et al. [29] introduced deep
LSTM as a deep learning technique to address the shortcomings of conventional forecasting
methods and present accurate predictions.

3. Backgrounds

In this section, we give a brief description of the applied methods, as follows.

3.1. ANFIS

The ANFIS approach was established by [48] as a new artificial network (ANN). The
ANFIS model’s structure is considered the incorporation of ANN and Fuzzy Inference
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Systems (FIS). Furthermore, “IF-THEN rules” are applied to generate a mapping for the
inputs and outputs, identified as the “Takagi–Sugeno inference model”. This renders to
substantiate that the ANFIS approach is more convenient and reliable to deal with real-
global datasets as it has a robust learning capability. As stated by these characteristics, the
ANFIS approach has been implemented in many applications.

In the common ANFIS workflow, as drawn in Figure 1, x and y represent the inputs of
Layer 1, where O1i indicates the outputs of the i node. The ANFIS mathematical model is
expressed as follows:

O1i = µAi (x), i = 1, 2, O1i = µBi−2(y), i = 3, 4 (1)

µ(x) = e−(
x−ρi

αi
)2

; (2)

where µ indicates the generalized Gaussian membership function. The membership values
of µ is represented by Ai and Bi, and αi and ρi represent the premise parameter set.

Moreover, Equation (3) can be utilized for the second layer:

O2i = µAi (x)× µBi−2(y) (3)

The output of the third Layer is calculated as:

O3i = wi =
ωi

∑2
(i=1) ωi

, (4)

in which wi represents the ith output from the layer 2.
Furthermore, the output of layer 4 is generated by Equation (5).

O4,i = wi fi = wi(pix + qiy + ri) (5)

in which f indicates a function that uses the input and parameters of the network as inputs.
ri, qi, and pi indicate consequent parameters of node i.

Finally, layer 5 generates the output that is computed as in Equation (6).

O5 = ∑
i

wi fi (6)

Figure 1. The basic ANFIS structure.

3.2. Aquila Optimizer (AO)

In this section, the proposed Aquila Optimizer (AO) is presented as follows.
Following [34], AO starts by determining the initial value for a set of N individuals X

using the following formula:
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Xij = r1 × (UBj − LBj) + LBj, i = 1, 2, . . . . . . , N j = 1, 2, . . . , Dim (7)

In Equation (7), r1 is a random value that belongs to ∈ [0, 1]. LBj and UBj denote the
lower bound and upper bound at dimension j, respectively. Dim is the dimension of the
test problem.

Similar to other metaheuristic techniques, AO has two phases, namely exploration
and exploitation, to update the current individuals. The exploration phase starts when
t ≤ ( 2

3 ) ∗ T, and it has two methods; the first one is formulated using Equation (8):

X1(t + 1) = Xbest(t)×
(

1− t
T

)
+ (XM(t)− Xbest(t) ∗ rand), (8)

In Equation (8), T is the number of total iterations. Xb(t) is the best individual ob-
tained so far at current iteration t, while the factor

(
1−t

T

)
is applied to manage the search

during the exploration phase. In addition, the XM(t) is the individual average among the
dimensions, and it is computed as:

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (9)

In the second exploration method, the AO depends on using Levy flight distribution
to update the current individual as formulated in the following equation:

X2(t + 1) = Xbest(t)× Levy(D) + XR(t) + (y− x) ∗ rand, (10)

where XR denotes a random chosen individual. Levy(D) refers to the Levy flight distribu-
tion defined as:

Levy(D) = s× u× σ

|υ|
1
β

, σ =

Γ(1 + β)× sine(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 (11)

In Equation (11), s = 0.01 and β = 1.5 are constant values, u and υ refer to random
numbers generated from [0,1]. In Equation (10), y and x are used to simulate the spiral
shape as:

y = r× cos(θ), x = r× sin(θ) (12)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(13)

where r1 ∈ [0, 20] is random value. ω = 0.005 and U = 0.00565 denote small values.
Following [34], there are two methods are used to simulate the exploitation ability

of individuals during the searching process. The first method depends on using the best
solution (Xbest), and the average of individual’s location (XM) and this formulated as:

X3(t + 1) = (Xbest(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ, (14)

In Equation (14), rand ∈ [0, 1] denotes random number. α and δ denote the exploitation
adjustment parameters.

The second exploitation method depends on Xbest, Levy, and quality function QF.

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1, (15)

where the main aim of using QF is to balance the search strategies, and it is defined as:

QF(t) = t
2×rand()−1

(1−T)2 (16)
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G1 represents different motions applied to track the best solution, and it is defined as

G1 = 2× rand()− 1 (17)

In Equation (15), G2 is decreased from 2 to 0, and it is formulated as

G2 = 2× (1− t
T
) (18)

where rand represents a random value.
The full description of the AO algorithm is given in Algorithm 1.

Algorithm 1 Aquila Optimizer (AO)

1: Set the initial value for the parameters of the AO.
2: Generate initial population X.
3: while (end condition is not met) do
4: Compute the fitness values for each Xi.
5: Find the best individual Xbest(t)
6: for (i=1,2...,N) do
7: if t≤ ( 2

3 )∗T then
8: { . First exploration method }
9: Update the Xi using Equation (8).

10: if Fit(X1(t + 1)) < Fit(X(t)) then
11: X(t) = (X1(t + 1))
12: if Fit(X1(t + 1)) < Fit(Xbest(t)) then
13: Xbest(t) = X1(t + 1)
14: end if
15: end if
16: { . Second exploration method}
17: Update the Xi using Equation (10).
18: if Fit(X2(t + 1)) < Fit(X(t)) then
19: X(t) = (X2(t + 1))
20: if Fit(X2(t + 1)) < Fit(Xbest(t)) then
21: Xbest(t) = X2(t + 1)
22: end if
23: end if
24: else
25: { . First exploitation method}
26: Update the Xi using Equation (14).
27: if Fit(X3(t + 1)) < Fit(X(t)) then
28: X(t) = (X3(t + 1))
29: if Fit(X3(t + 1)) < Fit(Xbest(t)) then
30: Xbest(t) = X3(t + 1)
31: end if
32: end if
33: { . Second exploitation method}
34: Update Xi using Equation (15).
35: if Fitness(X4(t + 1)) < Fitness(X(t)) then
36: X(t) = (X4(t + 1))
37: if Fitness(X4(t + 1)) < Fitness(Xbest(t)) then
38: Xbest(t) = X4(t + 1)
39: end if
40: end if
41: end if
42: end for
43: end while
44: return (Xbest).
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4. Proposed AO-ANFIS Model

The framework of the developed forecasting oil production is given in Figure 2. The
developed model aims to enhance the ability of the ANFIS network for forecasting oil using
the behavior of the AO algorithm. This is achieved by determining the optimal parameters
of ANFIS using AO.

Figure 2. The workflow of the proposed AO-ANFIS.

The developed AO-ANFIS starts by constructing the ANFIS network, followed by
splitting the historical oil dataset into training and validation sets, which represent 70% and
30%, respectively. Then, the generation of a set of N individuals X, which represents the
parameters for ANFIS (i.e., we have N configurations). The next step is to use the training
part of the dataset and compute the quality of each configuration using the following
fitness function (i.e., it is the root mean square error):

MSE =
1

Na

Ns

∑
i=1

(Ti − Pi)
2 (19)

where T and P refer to the actual and predicted output, respectively, and Na is the number
of training samples.

This process is followed by updating the value of the best configuration Xbest, and
then updating other configurations using the operators of AO, as defined in Algorithm 1.
Thereafter, the validation part is applied to the best configuration obtained so far and
computed the quality of the output. Besides this quality, the proposed model is used for
forecasting oil production.

The steps of the developed AO-ANFIS is given in Algorithm 2.
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Algorithm 2 Proposed AO-ANFIS algorithm

1: Input: number of individuals (N) and total number of iterations (tmax).
2: Build the ANFIS network and generate set of N individuals X.
3: Split the data into training and validation parts.
4: t = 1.
5: while t <= tmax do
6: Compute quality of each individual Xi.
7: Find (Xbest).
8: Update other individuals using operators of AO as defined in Equations (8)–(15).
9: t = t + 1.

10: end while
11: Return Xb.

5. Experimental Evaluation
5.1. Study Areas
5.1.1. Masila Oilfield, Yemen

The Masila basin is considered the largest basin in Yemen. It is located in the south
part of Yemen, Hadramout city, with a total area of 1250 km2 (see Figure 3). Masila basin
consists of more than 18 oilfields, including Sunah, N.E. Sunah, Hemiar, N.Camaal, and
Tawila oilfield, etc. The Sunah oilfield is the second-largest oilfield in the Masila basin. The
Sunah oilfield is an onshore oilfield located in the N.E. corner of the Masila basin. It is
subdivided into three main reservoirs, namely S1, S2, and S3. The S1 reservoir is divided
into S1A, S1B, S1C, and S1D. The Qishn formation (Upper Qishn formation) is the main
target formation in the S1A reservoir [49,50]. The data is collected from 11/10/1993 to
01/14/2012 with 6640 records.

5.1.2. Block 9, Tahe Oilfield, China

The Taha oilfield is located in Luntai city, Xinxiang province, China, as shown in
Figure 4. It was discovered in the 1990s by the China National Petroleum Corporation
(CNPC), with a proven reserve of 600 × 106 tonnes. The Taha oilfield consists of several
areas, including block-9. Block-9 is located at east longitude as 84°13′9′′–84°18′52′′ degree
and northing latitude 41°15′56′′–41°16′4′′, about 60km southwest of Luntai County of
Xinjiang, China [51,52]. The data used for this field is collected from 2006/01/01 to
2014/11/01 with about 3200 records.

5.2. Performance Metrics

In the current study, we employed three performance metrics to evaluate the proposed
AO-ANFIS model, the Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Coefficient of Determination R2, Standard deviation (Std), Akaike information
Criterion (AIC), and Bayesian information criterion (BIC). The definitions of the measures
are presented in Table 1, where N represents the size of the testing set. Y and Py denote the
target oil production and its prediction value using the model, respectively. Y is the mean
of Y. Moreover, k is the number of data to be estimated, and L̂ is the maximized value of
likelihood function.
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Figure 3. First study area: the Masila basin oilfield, Yemen.

Table 1. Performance measures.

Performance Metric Definition

MAE MAE = 1
N ∑N

i=1 |Pyi −Yi|
RMSE RMSE =

√
1

Ns
∑Ns

i=1(Pyi −Yi)2

R2 R2 = 1− ∑N
i=1(Yi−Pyi)

2

∑N
i=1(Yi−Yi)2

Std Std =

√
1
N

N
∑

k=1
(Yk −Y)2

AIC AIC = 2k− 2In(L)
BIC BIC = In(n)k− 2In(L̂)
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5.3. Results
5.3.1. Masila oilfields, Yemen

In this section, we assess the performance of the AO-ANFIS using datasets of Masila
oilfields. Additionally, we compared the AO-ANFIS to the traditional ANFIS model
and several modified ANFIS models, using several optimization methods, namely, sine
cosine algorithm (SCA), grey wolf optimizer (GWO), particle swarm optimization (PSO)
algorithm, slime mould algorithm (SMA), and genetic algorithm (GA).

From Table 2, we notice that the AO-ANFIS obtained the best performance in all
applied performance measures, namely, RMSE, MAE, R2, Std, computation time, AIC,
and BIC. For other models, in terms of RMSE, the GA-ANFIS came in the second rank,
followed by PSO, SMA, GWO, SCA, and the original ANFIS. For MAE, the GA came in
the second rank, followed by PSO, SMA, GWO, SCA, and the original ANFIS. For R2, the
PSO and GA obtained the second and third ranks, respectively, followed by SMA, GWO,
SCA, and the original ANFIS. For Std, the PSO and GA also obtained the second and third
rank, respectively, followed by the original ANFIS, SMA, GWO, and SCA. For AIC and
BIC, the PSO came in the second rank, followed by SMA, GA, GWO, original ANFIS, and
SCA, respectively.

Figure 4. The second study area (The Tahe oilfield, Block 9, China).

Additionally, the prediction results are drawn in Figure 5. As shown from this figure,
the proposed AO-ANFIS showed better performance than other methods.

Table 2. The results of the Almasila oilfield, Yemen. The best values are shown in bold.

RMSE MAE R2 Std Time AIC BIC

ANFIS 280.419 196.12 0.8980 20.803 - 2.562 × 104 2.565 × 104

AO 132.981 77.870 0.9564 3.2824 69.15 2.494 × 104 2.498 × 104

SMA 143.559 82.834 0.9508 38.934 75.52 2.500 × 104 2.503 × 104

PSO 133.077 78.366 0.9560 3.9058 88.43 2.498 × 104 2.501 × 104

GA 133.017 78.240 0.9559 3.3960 101.81 2.503 × 104 2.506 × 104

SCA 213.701 121.55 0.9287 145.95 116.73 2.604 × 104 2.607 × 104

GWO 150.408 87.326 0.9485 32.020 130.82 2.552 × 104 2.555 × 104
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Figure 5. The results of the AO and the compared models for the Masila oilfield.

5.3.2. Results of Tahe Oilfield

The results of the AO-ANFIS and other compared methods for the Tahe oilfield are
presented in this section. As shown in Tables 3 and 4, in terms of RMSE and MAE, the
proposed AO-ANFIS outperformed all compared models with the smallest RMSE and
MAE values in nine out of ten wells. The PSO obtained the best RMSE and MAE values
in one out of ten wells (well No. 10). Moreover, in terms of R2, the proposed AO-ANFIS
obtained the best performance in eight out of ten wells. In comparison, the PSO obtained
the best R2 value in two out of ten wells (Wells No. 9 and 10), as recorded in Table 5.
Additionally, Table 6 shows the results of all compared methods in terms of AIC and BIC.
The AO obtained the best AIC and BIC results in seven out of ten oil wells (1–6, and 9). The
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GA obtained the best AIC and BIC results for wells No. 7 and 10, where for well No. 8, the
best results were obtained by PSO.

Table 3. The results of the Tahe oilfield in terms of RMSE. The best values are shown in bold.

Well No. ANFIS AO SMA PSO GA SCA GWO

1 0.810943 0.647761 0.769534 0.652156 0.669542 1.856424 0.842804
2 0.911838 0.846458 0.888404 0.852367 0.846736 1.376773 0.872182
3 0.197926 0.184419 0.193037 0.232683 0.211358 0.338897 0.207196
4 0.924388 0.831415 0.870349 0.832117 0.83418 1.123511 0.845442
5 1.314302 1.273835 1.274383 1.284812 1.286377 1.304518 1.316726
6 0.360378 0.279152 0.302685 0.336957 0.341631 0.312805 0.291097
7 0.811019 0.589061 0.597778 0.590661 0.590903 0.630916 0.595989
8 0.232292 0.118169 0.141663 0.134665 0.139349 0.261989 0.136473
9 0.379245 0.325423 0.330289 0.327446 0.338609 0.532137 0.325509

10 1.233928 1.134736 1.141702 1.132283 1.135046 1.273789 1.14608

Table 4. The results of the Tahe oilfield in terms of MAE. The best values are shown in bold.

Well No. ANFIS AO SMA PSO GA SCA GWO

1 0.516759 0.344352 0.454638 0.360511 0.387027 1.548676 0.532417
2 0.564628 0.519043 0.534916 0.52998 0.519307 0.958247 0.520695
3 0.143552 0.137481 0.146112 0.20609 0.172747 0.259218 0.147989
4 0.591773 0.393997 0.405086 0.398926 0.401074 0.66344 0.4053
5 0.6847 0.63277 0.641475 0.640397 0.649383 0.654776 0.638201
5 0.230368 0.157865 0.17964 0.26444 0.269095 0.159649 0.167995
7 0.423444 0.297352 0.298373 0.320999 0.327247 0.307951 0.299756
8 0.204196 0.085574 0.11179 0.108192 0.113562 0.221164 0.104923
9 0.252283 0.215868 0.235423 0.229335 0.244429 0.388942 0.219629

10 0.728217 0.631841 0.632431 0.629514 0.653871 0.759923 0.632195

Table 5. The results of the Tahe oilfield, China, in terms of R2. The best values are shown in bold.

Well No. ANFIS AO SMA PSO GA SCA GWO

1 0.869907 0.894713 0.882372 0.89383 0.893807 0.743634 0.867757
2 0.910431 0.922905 0.917146 0.920016 0.92284 0.849167 0.917211
3 0.885246 0.911788 0.905669 0.911674 0.911593 0.839534 0.880589
4 0.919795 0.929992 0.923484 0.92927 0.929178 0.896856 0.927826
5 0.972304 0.974152 0.973963 0.973511 0.973443 0.973337 0.972255
6 0.697116 0.778227 0.732013 0.775911 0.775398 0.680402 0.737086
7 0.92443 0.963254 0.961967 0.963122 0.963224 0.956353 0.960739
8 0.603851 0.743053 0.723068 0.740263 0.740317 0.635031 0.715649
9 0.954677 0.967249 0.966646 0.967257 0.966905 0.940252 0.964926

10 0.930482 0.941213 0.939882 0.941818 0.941361 0.934052 0.939792

Table 6. The results of the Tahe oilfield, China, in terms of AIC and BIC measures. The best values are shown in bold.

Well No. ANFIS AO SMA PSO GA SCA GWO

1 AIC 3.579 × 103 3.320 × 103 3.698 × 103 3.663 × 103 3.623 × 103 3.638 × 103 4.039 × 103

BIC 3.607 × 103 3.349 × 103 3.727 × 103 3.692 × 103 3.652 × 103 3.667 × 103 4.067 × 103

2 AIC 3.904 × 103 3.862 × 103 3.938 × 103 3.872 × 103 3.931 × 103 3.917 × 103 4.035 × 103

BIC 3.932 × 103 3.890 × 103 3.966 × 103 3.901 × 103 3.959 × 103 3.945 × 103 4.063 × 103

3 AIC 1.150 × 103 9.469 × 102 9.888 × 102 9.941 × 102 9.745 × 102 1.064 × 103 1.017 × 103

BIC 1.178 × 103 9.744 × 102 1.016 × 103 1.022 × 103 1.002 × 103 1.091 × 103 1.044 × 103

4 AIC 3.847 × 103 3.844 × 103 3.947 × 103 3.923 × 103 3.944 × 103 4.132 × 103 3.920 × 103

BIC 3.875 × 103 3.872 × 103 3.975 × 103 3.951 × 103 3.972 × 103 4.160 × 103 3.948 × 103

5 AIC 4.424 × 103 4.416 × 103 4.422 × 103 4.419 × 103 4.422 × 103 4.438 × 103 4.433 × 103

BIC 4.451 × 103 4.443 × 103 4.449 × 103 4.446 × 103 4.449 × 103 4.464 × 103 4.460 × 103
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Table 6. Cont.

Well No. ANFIS AO SMA PSO GA SCA GWO

6 AIC 6.124 × 102 4.432 × 102 5.306 × 102 5.487 × 102 5.428 × 102 5.622 × 102 5.010 × 102

BIC 6.364 × 102 4.672 × 102 5.546 × 102 5.727 × 102 5.668 × 102 5.862 × 102 5.250 × 102

7 AIC 2.280 × 103 2.267 × 103 2.307 × 103 2.277 × 103 2.261 × 103 2.359 × 103 2.322 × 103

BIC 2.305 × 103 2.292 × 103 2.332 × 103 2.302 × 103 2.285 × 103 2.383 × 103 2.347 × 103

8 AIC −3.004 × 102 −3.273 × 102 −2.576 × 102 −3.290 × 102 −2.598 × 102 −4.197 × 101 −3.039 × 102

BIC −3.014 × 102 −3.022 × 102 −2.325 × 102 −3.139 × 102 −2.348 × 102 −1.693 × 101 −2.788 × 102

9 AIC 2.794 × 103 2.671 × 103 2.721 × 103 2.770 × 103 2.713 × 103 2.793 × 103 2.710 × 103

BIC 2.821 × 103 2.699 × 103 2.749 × 103 2.797 × 103 2.740 × 103 2.820 × 103 2.738 × 103

10 AIC 4.731 × 103 4.755 × 103 4.769 × 103 4.761 × 103 4.712 × 103 4.830 × 103 4.752 × 103

BIC 4.759 × 103 4.783 × 103 4.797 × 103 4.789 × 103 4.740 × 103 4.858 × 103 4.781 × 103

Furthermore, Figure 6 shows the prediction results of the AO-ANFIS against the
compared model. As noticed from this figure, AO-ANFIS achieved the nearest values to
the target data.

5.4. Comparison to Other Forecasting Methods

We also compare the proposed AO-ANFIS model to other well-known time series
forecasting methods, such as ARIMA and LSTM. Table 7 illustrates the comparisons results
using the oil production datasets of the Almasila oilfield, Yemen. The AO-ANFIS obtained
the best results in terms of RMSE, MAE, R2, and Std, whereas the ARIMA model obtained
the best results in terms of AIC and BIC.

Table 7. The results of comparisons with other forecasting methods. The best values are shown
in bold.

RMSE MAE R2 Std AIC BIC

AO 132.981 77.870 0.9564 3.2824 2.494 × 104 2.498 × 104

LSTM 169.28 116.32 0.9497 156.81 2.56 × 104 2.56 × 104

ARIMA 136.59 81.868 0.9548 132.24 1.02 × 105 1.02 × 105

5.5. Statistical Tests

In this section, we implement a well-known statistical test, the Friedman test, to
further evaluate the AO-ANFIS against the compared models.

The Friedman test results are illustrated in Table 8 for the Almasila oilfields data
and in Table 9 for the Tahe oilfield data. From the results in the tables, we see that the
AO-ANFIS obtained the best results in all datasets, in terms of RMSE, except in one oil well
(well No.10), where the PSO-ANFIS recorded the best result in this well dataset.

Table 8. The results of the Friedman test for the Almasila oilfield’s dataset. The best value is shown
in bold.

AO ANFIS SMA PSO GA SCA GWO

RMSE 2.6486 6.7568 4.3243 2.8919 2.7027 4.5946 4.0811

Overall, from all of the evaluation results, the AO-ANFIS method showed its high
performance and superiority over all other compared models. Thus, AO-ANFIS can be
considered an efficient time series forecasting model, which can be further utilized in other
time series forecasting applications.
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Table 9. The results of the Friedman test for the Tahe oilfield’s dataset using RMSE measure. The
best values are shown in bold.

Well No AO ANFIS SMA PSO GA SCA GWO

1 1.677 5.065 3.903 3.290 2.806 6.484 4.774
2 2.290 6.000 4.065 3.000 2.548 5.968 4.129
3 2.667 4.000 3.667 5.167 3.500 4.667 4.333
4 2.200 6.350 3.100 3.000 3.550 6.050 3.750
5 2.500 6.643 2.571 4.286 4.429 5.000 2.571
6 1.500 6.000 3.429 5.071 4.929 4.071 3.000
7 2.357 7.000 4.214 2.929 3.643 4.643 3.214
8 1.571 6.571 3.143 3.286 3.929 5.500 4.000
9 1.786 6.214 3.857 3.643 4.500 5.000 3.000

10 3.214 6.643 4.929 1.714 1.857 5.286 4.357

Figure 6. The results of the AO and the compared models for well No. 1., Tahe oilfield.
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6. Conclusions

In the current study, we proposed a developed ANFIS model, called AO-ANFIS, for
oil production time series forecasting. The Aquila Optimizer (AO) is a recently developed
metaheuristic optimization algorithm that showed significant performance in addressing
optimization tasks.

In this study, AO is applied to optimize ANFIS parameters to boost its prediction
accuracy. The AO-ANFIS is evaluated with different datasets collected from two oilfields,
namely, Tahe oilfields and Almasila oilfields, from China and Yemen, respectively. We also
considered extensive experimental comparisons to state-of-art models, including the ANFIS
traditional version, in addition to five modified versions of ANFIS using five optimization
algorithms, called PSO, SCA, SSA, GWO, and SMA. AO-ANFIS has achieved significant
results, and it outperformed the mentioned models in terms of RMSE, MAE, and R2.

The current AO-ANFIS model could be further developed to achieve more accurate
results in future work. For example, applying a mutation strategy could further enhance
the search process of the AO algorithm, which will result in improving ANFIS accuracy.
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37. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
38. Abdullayeva, F.; Imamverdiyev, Y. Development of Oil Production Forecasting Method based on Deep Learning. Stat. Optim. Inf.

Comput. 2019, 7, 826–839. [CrossRef]
39. Calvette, T.; Gurwicz, A.; Abreu, A.C.; Cavalcanti Pacheco, M.A. Forecasting smart well production via deep learning and data

driven optimization. In Proceedings of the Offshore Technology Conference Brasil, Rio de Janeiro, Brasil, 29–31 October 2019.
40. Wang, Q.; Song, X.; Li, R. A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting

US shale oil production. Energy 2018, 165, 1320–1331. [CrossRef]

http://dx.doi.org/10.2118/185957-PA
http://dx.doi.org/10.1007/s10596-005-9001-7
http://dx.doi.org/10.1016/j.petrol.2020.107013
http://dx.doi.org/10.1016/j.petrol.2019.106682
http://dx.doi.org/10.1021/ef980143v
http://dx.doi.org/10.1016/j.petrol.2008.12.006
http://dx.doi.org/10.1016/j.fuel.2015.02.094
http://dx.doi.org/10.1016/j.petrol.2018.01.019
http://dx.doi.org/10.1007/s11242-019-01265-3
http://dx.doi.org/10.1016/j.petlm.2018.06.002
http://dx.doi.org/10.1016/j.neucom.2018.09.082
http://dx.doi.org/10.2516/ogst/2020081
http://dx.doi.org/10.1109/ACCESS.2018.2879965
http://dx.doi.org/10.3390/electronics8101071
http://dx.doi.org/10.3390/ijerph17103520
http://dx.doi.org/10.1016/j.cie.2021.107250
http://dx.doi.org/10.3390/electronics10040447
http://dx.doi.org/10.3390/sym12091460
http://dx.doi.org/10.1016/j.eswa.2020.114107
http://dx.doi.org/10.19139/soic-2310-5070-651
http://dx.doi.org/10.1016/j.energy.2018.10.032


Processes 2021, 9, 1194 17 of 17

41. Heghedus, C.; Shchipanov, A.; Rong, C. Advancing Deep Learning to Improve Upstream Petroleum Monitoring. IEEE Access
2019, 7, 106248–106259. [CrossRef]

42. Zhong, Z.; Sun, A.Y.; Ren, B.; Wang, Y. A Deep-Learning-Based Approach for Reservoir Production Forecast under Uncertainty.
SPE J. 2021, 26, 1314–1340. [CrossRef]

43. Wang, L.; Shao, M.; Kou, G.; Wang, M.; Zhang, R.; Wei, Z.; Sun, X. Time Series Analysis of Production Decline in Carbonate
Reservoirs with Machine Learning. Geofluids 2021, 2021, 6638135.

44. Yan, M.; MacDonald, J.C.; Reaume, C.T.; Cobb, W.; Toth, T.; Karthigan, S.S. Machine Learning and the Internet of Things Enable
Steam Flood Optimization for Improved Oil Production. arXiv 2019, arXiv:1908.11319.

45. Singh, H.; Seol, Y.; Myshakin, E.M. Prediction of gas hydrate saturation using machine learning and optimal set of well-logs.
Comput. Geosci. 2021, 25, 267–283. [CrossRef]

46. Zanjani, M.S.; Salam, M.A.; Kandara, O. Data-Driven Hydrocarbon Production Forecasting Using Machine Learning Techniques.
Int. J. Comput. Sci. Inf. Secur. 2020, 18, 65–72.

47. Liu, W.; Liu, W.D.; Gu, J. Petroleum Production Forecasting Based on Machine Learning. In Proceedings of the 2019 3rd
International Conference on Advances in Image Processing, Chengdu, China, 8–10 November 2019; pp. 124–128.

48. Jang, J.S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
49. Hakimi, M.H.; Al Qadasi, B.A.; Al Sharrabi, Y.; Al Sorore, O.T.; Al Samet, N.G. Petrophysical properties of Cretaceous clastic

rocks (Qishn Formation) in the Sharyoof oilfield, onshore Masila Basin, Yemen. Egypt. J. Pet. 2017, 26, 439–455. [CrossRef]
50. Al-Areeq, N.M.; Maky, A.F. Organic geochemical characteristics of crude oils and oil-source rock correlation in the Sunah oilfield,

Masila Region, Eastern Yemen. Mar. Pet. Geol. 2015, 63, 17–27. [CrossRef]
51. Qin, S.; Zhao, J.; Li, M. A case study: Geochemical tracing indices on the migration of water-soluble gases in Hetianhe gas field,

Tarim Basin. Earth Sci. Front. 2006, 13, 524.
52. Wu, J.; Fan, T.; Gao, Z.; Gu, Y.; Wang, J.; Du, Y.; Li, C.; Wang, S.; Zhang, C.; Meng, M.; et al. Identification and characteristic

analysis of carbonate cap rock: A case study from the Lower-Middle Ordovician Yingshan Formation in Tahe oilfield, Tarim
Basin, China. J. Pet. Sci. Eng. 2018, 164, 362–381. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2931990
http://dx.doi.org/10.2118/205000-PA
http://dx.doi.org/10.1007/s10596-020-10004-3
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1016/j.ejpe.2016.06.004
http://dx.doi.org/10.1016/j.marpetgeo.2015.01.017
http://dx.doi.org/10.1016/j.petrol.2017.12.070

	Introduction
	Related Work
	Backgrounds
	ANFIS
	Aquila Optimizer (AO)

	Proposed AO-ANFIS Model
	 Experimental Evaluation
	Study Areas
	Masila Oilfield, Yemen
	Block 9, Tahe Oilfield, China

	Performance Metrics
	Results
	Masila oilfields, Yemen
	Results of Tahe Oilfield

	Comparison to Other Forecasting Methods
	Statistical Tests

	Conclusions
	References

