VAGOTVARKOS DARBŲ GALIMA ĮTARKA LEDŲ SANGRŪDŲ FORMAVIMUISI NERYJE NUO P. VILEIŠIO TILTO IKI ŽIOČIŲ

Magistro baigiamasis darbas

Studijų sritis: Technologijos mokslai
Studijų kryptis: Statybos inžinerija
Studijų šaka: Vandens inžinerija
Studijų programa: Hidrotechninės statybos inžinerija

Akademija, 2016
Baigiamųjų darbų vertinimo komisija:

(Patvirtinta Rektoriaus įsakymu Nr. 140-PA, 2016 m. balandžio 26 d.)


Nariai:
1. Prof. dr. Arvydas Povilaitis, Aleksandro Stulginskio universitetas;
2. Doc. dr. Algirdas Radzevičius, Aleksandro Stulginskio universitetas;
3. Doc. dr. Rytis Skominas, Aleksandro Stulginskio universitetas;

Mokslinis vadovas doc. dr. Antanas Dumbrauskas, Aleksandro Stulginskio universitetas

Recenzentas prof. dr. Petras Punys, Aleksandro Stulginskio universitetas

Instituto direktorius prof. dr. Arvydas Povilaitis, Aleksandro Stulginskio universitetas

Oponentas lekt. Vitas Damulevičius, Aleksandro Stulginskio universitetas
Santrauka


Darbo tikslas – įvertinti vagotvarkos darbų galimą įtaką ledų sangrūdų formavimu Neryje nuo P. Vileišio tilto iki žiočių.

Pagrindiniai žodžiai: ledų sangrūdos, modeliavimas, HEC-RAS, Neris.
Summary

In the year of 2015, in the city of Kaunas, between the Neris river mouth and “P. Vileišis” bridge on the right bank of the Neris the riverbed works have been started to commence. This area falls into the territory of the threat of flood. Usually, floods are formed due to the formation of the ice jams. Thus, a necessity to evaluate the possible impact of the riverbed works on the formation of ice jams arose. The chosen method of evaluation – numerical modelling. The simulation is carried-out according to these scenarios: ice of three different thickness and four different discharges. Upon the carrying-out of the simulation and analysing the results, it can be stated that the riverbed works have insignificant an impact on the formation of ice jams.

Aim of the work – to evaluate the possible impact of the riverbed works on the formation of ice jams in the Neris river from the P.Vileišis bridge and till the river’s mouth.

Key words: ice jams, modelling, “HEC-RAS”, Neris.
TURINYS

ĮVADAS ............................................................................................................................. 6
1. LITERATŪROS APŽVALGA ......................................................................................... 8
  1.1 Ledų sangrūdos ir potvyniai. Jų poveikis ............................................................. 8
  1.2 Ledo formavimasis ir ledų sangrūdų tipai ............................................................. 9
  1.3 Ledų sangrūdų formavimosi vietos ..................................................................... 11
  1.4 Ledų sangrūdų parametrai ................................................................................ 13
  1.5 Ledų sangrūdos formavimosi faktoriai ............................................................... 14
  1.6 Ledų sangrūdų modeliavimas .......................................................................... 15
  1.7 Potvynių rizikos dėl ledų sangrūdų vertinimas ir priemonės jai švelninti ....... 18
2. DARBO TIKLAS IR UŽDAVINIAI ................................................................................ 21
3. TYRIMO OBJEKTAS IR METODAI ............................................................................. 22
  3.1 Tyrimo objektas .................................................................................................. 22
  3.2 Tyrimų metodai .................................................................................................. 22
    3.2.1 Teorinis pagrindas ....................................................................................... 23
    3.2.2 Modelio kūrimas ....................................................................................... 26
    3.2.3 Modelio kalibravimas ............................................................................... 27
4. DARBO EIGA IR REZULTATAI .................................................................................. 28
  4.1 Duomenų rinkimas ............................................................................................. 28
  4.2 Lauko tyrimai ..................................................................................................... 29
  4.3 Hidrodinamikos modelio kūrimas .................................................................... 30
  4.4 Modelio kalibravimas ....................................................................................... 32
  4.5 Numatytyų scenarijų modeliavimas ................................................................. 34
  4.6 Gauti rezultatai ir jų aptarimas ....................................................................... 37
    4.6.1 Ledų sangrūdų formavimasis .................................................................... 37
    4.6.2 Patvankų dydžiai ....................................................................................... 38
IŠVADOS ........................................................................................................................... 41
LITERATŪRA ..................................................................................................................... 42
PRIEDAI ............................................................................................................................ 45
DARBO APROBACIJA ...................................................................................................... 47
Kiekvienais metais visame pasaulyje patiriami dideli nuostoliai dėl potvynių, o dalis šių potvynių susidaro dėl upėse pavasarį (60%) arba žiemą (35%), tai yra reiškiniai sukelti sniego tirpsmo ir ledų sangrūdų arba intensyvaus lietaus. Taip pat pažymėtina, kad pavasario potvyniai yra grėsmingesni (Aplinkos..., 2011).


**Mokslinis naujumas.** Galima pastebėti, kad pasaulinio lygiu, o ypač JAV, Kanadoje ir Rusijoje yra nemažai straipsnių ir knygų apie potvynių ledų sangrūdas ir jų modeliavimą. Lietuvoje parašytų mokslinių darbų apie ledo reiškiniai yra nedaud
(Glavickas ir kt., 2012), nors jų ir įvykstą nemažai, o darbų susijusių su ledų sangrūdų modeliavimu, beveik iš viso nėra.

**Struktūra.** Darbą sudaro įvadas, literatūros apžvalga, darbo tikslas ir uždaviniai, tyrimo objektas ir metodai, darbo eiga ir rezultatai, išvados, naudotos literatūros sąrašas. Darbo apimtis – 44 puslapių, Jame yra 29 paveikslai ir 1 lentelė.
1. LITERATŪROS APŽVALGA

1.1 Ledų sangrūdos ir potvyniai. Jų poveikis.


Potvyniai gali būti skirstomi į stichinius (užliejamos teritorijos, gali būti užliejamos tik vieno procento arba mažesnės tikimybės potvynio metu) ir katastrofinius (užliejamos teritorijos, kurios gali būti užliejamos tik vienos dešimtosios procento arba mažesnės tikimybės potvynio metu). Dažnusiai Lietuvoje potvyniai kyla dėl sniego tirpimo ir ledų kamščių (apie 70–75 % atvejų), intensyvių liūčių (apie 15 % atvejų). Kitos priežastys, tokios kaip vandens lygio Baltijos jūroje pakilimas, netvarkingų užtvankų eksploatavimas ir avarijos, sudaro dar 15 %. Didžioji potvynių dalis Lietuvos upėse įvyksta pavasarį (60%) arba žiemos (35%) (Aplinkos..., 2011). O su ledų sangrūdais susiduria daugelis šalių, Japonija ir Kinija Azijoje, 82% Š.Amerikos žemyno, Rusija, Skandinavijos ir Pabaltijo šalys ir t.t. (Debolskaya, 2009). Kaip Glavickas ir Stanevičius (2012) užsimena savo straipsnyje, kad didžiausios patvankos Lietuvoje būna sukeltos išo sankamšų ir ledų sangrūdų. Išo sankamšomis dažniausiai vadinamos ledų sangrūdos, kurios pasireiškia upės užšalimo laikotarpiu, kai vagoje susiformuoja dideli plukdomo išo kiekiui. Nuleidėjimo laikotarpio sangrūdos susiformuoja, kai prasideda suskiliusio ledo lyčių judėjimas upėje.

Kaip pagrindinius ledų sangrūdos poveikius galima išskirti šiuos (Beltaos, 1995):

- Potvyniai. Dėl jų gali žuti žmonės ir gyvūnai, sugriaunami ar pažeidžiami įvairūs pastatai, sunaikinamos materialinės vertybės, gali būti užteršiami požeminiai vandenys ir t.t.
- Poveikis aplinkai. Jis ne visada gali būti neigiamas, nes užlietos salpos gali turėti didelę naudą ekosistemai.
- Gali sutrikti hidroelektrinių darbas.
- Užkertamas kelias laivybai.
- Poveikis hidrotechnikos statiniams.
Tačiau naujausi mokslo ir technikos pasiekimai bei didelė patirtis, dabar leidžia prognozuoti ir valdyti šiuos procesus. O padaryta žala gali būti sumažinta iki tam tikro minimumo, jei tinkamai ir laiku organizuoti prevencines priemones.

1.2 Ledo formavimas ir ledų sangrūdų tipai

Ledo formavimas vyksta šaltuosiuse regionuose. Šie regionalai pasižymi tuo, kad juose oro temperatūra išsilaiko žemiau 0º C, bent vieną mėnesį. Ettema ir Tempera (2012) upėse susidarant ledą suskirstė į 4 grupes. Geriausiai matomas ledas yra tas, kuris formuojasi upės krantuose. Antrai grupei galima priskirti mažus ledo gabaliukus, kurios galima pavadinti ledo kristalais, kurie yra 1-2 mm dydžio ir didėja, kol yra šaltame vandenyje. Trečiai grupei yra priskiriamas inkaruotas ledas, kuris yra nusėdęs ant dugno, jis nusėda dėl vandenynje vykstančios turbulencijos. Kai ledo kristalai ir inkaruotas ledas atsilaipsnins jie formuojasi į bendrą masę, kuri yra panaši į įvairių košių ir veikiama šaltomis surašyta ižą, t.y. ketvirtoji grupė (1.1 pav.).

1.1 pav. Ledo formavimas. Perdarytas paveikslas pagal (Ettema et al., 2012)

Yra išskiriama ir pagrindiniai ledų sangrūdų tipai - užšalimo ir nuledėjimo sangrūdos (Beltaos, 1995; Glavickas ir kt., 2012). O potvyniai dėl ledų sangrūdų gali pasireikšti skirtingais metų laikais ir kiekvieną kartą būti skirtingi:

- Klasikinės ledų sangrūdos (nuledėjimo) (1.2 pav.) įvyksta pavasarį atšilimo metu, kai kinta ledo savybės (Beltaos, 1995; White, 1999). Dažniausiai dėl kylančio vandens lygio upėse, kuris įvyksta dėl tirpstančio sniego arba lietaus, kieta ledo danga suyra ir susidaro daug pasrovių plaukiančių ledo lyčių. Ledo lytims susidūrus su kliūtimis, kaip tiltai, salos, upės susiaurėjimai, susidaro ledų sangrūda (Beltaos, 2014). Tačiau jos formavimuisi didelę reikšmę turi
paviršinis vandens greitis, kuris turi būti gana didelis (0,6-0,8 m/s ir daugiau). (Debolskaya, 2009). Greitį potvyniai įvyksta pirmiausia prieš sangrūdą, bet įvykus jos griuvimui ir už jos. Didelės ledo masės, judančios pasroviui gali plauti kelyje pasitaikančius medžius, krūmus ir netgi namus, esančius virš upės.

1.2 pav. Nuledėjimo ledų sangrūdos skersinis pjūvis. Perdarytas paveikslas pagal (© www.usace.army.mil/)

- Potvynis ankstyvą žiemą ar vėlyvų rudenį gali kilti dėl ledų sangrūdų (užšalimo sangrūdos), t.y. užšalimo metu (1.3 pav.), kurios susidaro dėl ką tik susidariusio ižo ir dar vadinamos ižo sankamšomis. Ledo danga formuoja temperatūrai staiga krintant, bet upės srovė neleidžia susidaryti kietai ledo dangai, tad susidaro ižas. Reikia pažymėti, kad pirmiausiai užšalė vanduo prie krantų. Ledų sangrūdų formavimuose lemiamą reikšmę šių atvejų turi paviršinis vandens greitis (daugiau nei 0.4 m/s) ir oro temperatūra užšalimo metu. Ledo lytys arba ižas juda žemyn pasroviui, kol pasieka lėčiau judančias ar atsimuša į jau susiformavusią kietą ledo dangą ir paneria po ja (susiformuoją kabanti ledų sangrūdą) arba kol atsimuša į upės vagos dugną (formuoja inkaruota ledų sangrūda) (Beltaos, 1995; Malenchak, 2011).
1.3 pav. Užšalimo ledų sangrūdos skersinis pjūvis. Perdarytas paveikslas pagal (© www.usace.army.mil/)

- Su ledu susiję potvyniai gali taip pat įvykti žiemos metu, kai temperatūra labai žema, dėl to seklesnėse upės vagose arba pralaidose ledas užšąla iki pat dugno. Bet upės vanduo toliau teka ant ledo paviršiaus ir užšaldamas gali sudaryti naują ledo dangą, toks procesas gali vykti kol upės vagas visai blokuojama, o tokiu atveju vanduo išsilieja ir teka sausuma sukeldamas potvynį, taip užšaldamas apylinkėse arba užšaldamas ant žemės paviršiaus. Tokios sangrūdos dažniausiai įvyksta vietose, kur yra pralaidos (Beltaos, 1995).

Pačios sangrūdos dažniausiai negali būti priskiriamos vienam tipui, nes jos gali išsilaikeyti toje pačioje vietose gana ilgą laiko tarpą. Sangrūda gali būti stabili užšalant ledą ir padengusius ledą dangą, o jai suirus gali veikti kaip papildoma kliūtis (Glavickas ir kt., 2012).

### 1.3 Ledų sangrūdų formavimosi vietos

Kadangi dažniausiai sangrūdas negalima priskirti vienam tipui, tad užšalimo ir nuleidėjimo ledų sangrūdų vietos dažnai gali būti vienodos. Užšalimo ledų sangrūdų gali formuotis kai vyksta intensyvus ižo judėjimas, vietose kur yra didelis ir staigus nuolydis ir sulakomas ledas (Kozlov ir kt., 2015), nors Beltaos (1995) pažymi, kad jos taip pat gali formuotis ir kur nuolydis mažėja, nes ižas yra pristabdomas. Ledų sangrūdos taip pat
formuojaose vagoose, kur yra apsunkintas ledo lyčių judėjimas (Kozlov ir kt., 2015) ar yra viršijamas vagos talpumas (Beltaos, 1995). O tipinės vietos yra šios (Whiteman, 2011):

- kur yra susiformavusi kieta ledo danga, nes ji tampa kliūtimi atplaukiančioms ledo lytim;
- susiaurėjimuose, šie susiaurėjimai gali būti natūralūs arba dėl susidariusios ledo dangos kranto;
- upės posūkiuose, nes yra blokuojamos ledo lytys;
- upių santakose, 1.4 pav. 4 ir 5 variantai;
- salos ir tiltų atramos, sumažina upės plotį ir yra papildoma kliūtis ledo lytim;
- prie tilto atramų;
- seklumose;
- vietos kur formuoja kabančios ar inkarutos ledų sangrūdos, sumažina vandens gylio, tad ledo lytys nebegali judėti taip laisvai;
- yra dideli priešpriešiniai vėjai upės žiotyse.

Rusijos literatūroje (Kozlov ir kt., 2015) nuleidėjimo sangrūdos dar yra skirstomos ir pagal sangrūdos susidarymo vietą (1.4 pav.):

**1.4 pav.** Nuleidėjimo sangrūdos pagal jų susidarymo vietą (Kozlov ir kt. 2015). a - vanduo, b – ledo lytys, c – ledų sangrūda.
1. Skersinė sangrūda.
2. Šoninė sangrūda.
4. Žiočių sangrūda, susiformavusi dėl intako upės vagos ledo.
5. Žiočių sangrūda susiformavusi dėl pagrindinės upės vagos ledo.

1.4 Ledų sangrūdų parametrai

Užšalimo ir nuledėjimo Sangrūdų formavimosi procesai turi skirtingą pobūdį, todėl skiriasi jų struktūra, matmenis, trukmę, sukeliamas patvankos aukštis ir vandens lygio kilimas.

Nuledėjimo sangrūdos struktūrai būdingos 3 pagrindinės zonos (Wuebben et al, 1995) (1.5 pav.):

2. Tiesiog sangrūda, skirstoma į pradžios, pusiausvyros ir pabaigos sekcijas – tai daugiasluoksnis chaotiškai išsidėsčiusių ledo lyčių susikaupimas.

1.5 pav. Ilgėji profilis tipinės nuledėjimo sangrūdos. Perdarytas paveikslas pagal (Wuebben et al., 1995)

Užšalimo metu susidarančios sąrankos pagal struktūrą yra vientisos ir jų storis nėra didelis, o ilgis dažniausiai siekia nuo 3 iki 5 upės pločio reikšmės (Donchenko, 1987).

Dar viena iš svarbių ledų sąrankos charakteristikos yra jos vidutinė trukmė. Nuledėjimo ledų sąranka būna trumpesnė, nei užšalimo. 2012 m. Glavickas ir Stanevičius atliko didelį darbą išanalizuodami 1960-2010 m. ledų sąrankų pagrindines charakteristikas Lietuvoje ir jie taip aprašė gautus rezultatus:

,,Lietuvoje užšalimo metu susidarančių sąrankų vidutinė trukmė siekia 6 dienas, o nuledėjimo – tik apie 3 dienas. Lietuvoje vidutinis vandens lygio kilimo intensyvumas užšalimo sąrankų metu siekia 13 cm/parą, o nuledėjimo – 62 cm/parą. Maksimalus vandens lygio kilimo intensyvumas dar labiau skiriasi: užšalimo sąrankų metu jis yra apie 167 cm/parą, o nuledėjimo – 515 cm/parą. Užšalimo sąrankų metu vidutinis patvankos aukštis siekia 35,5 cm, o nuledėjimo – 84,4 cm. Didžiausios patvankos, sukeltos užšalimo sąrankos, siekia 430 cm, o didžiausia nuledėjimo – 541 cm.

Lietuvoje didžiausiu ledų sąrankų dažnumu pasižymi Neris ir Nemuno vidurupis bei kai kurios mažesnės Pietryčių Lietuvos upės, kurių stotyse užfiksuoja vidutiniškai nuo 1,9 iki 2,7 sąrankų per metus. Mažiau ledų sąrankų pasikartoja Vidurio ir Šiaurės Lietuvos upėse, kurių vandens matavimo stotyse nustatoma nuo 1,1 iki 1,8 sąrankų per metus. Mažiausia sąrankų – Vakarų Lietuvos upėse. Jų vandens matavimo stotyse sąrankos susidaro ne kiekvienais metais.“ (Glavickas ir kt., 2012)

1.5 Ledų sąrankos formavimosi faktoriai

Be formavimosi vietas, viena iš svarbių ledų sąrankos sąvoka yra jos galingumas, kuri charakterizuojasi vandens lygio pakilimu ir priklauso nuo daugelio faktorių. Dėl šios priežasties dažniausiai būna sudėtinga prognozuoti ledų sąrankos vietą ir laiką. Yra įvairių ledų sąrankos formavimosi faktorių (Beltaos, 1995; Kozlov ir kt., 2015):

- ledo lyčių kiekis ir jų judėjimo greitis link ledų sąrankos;
- potvynio intensyvumas, ypač maksimalus vandens lygio pakilimas ledonešio metu;
- kliūčių buvimas;
- oro temperatūra;
- sniego dangos storis upės upės baseine;
bendra saulės radiacija;
ledų išsilaisvinimo seka baseine.

Paprasčiausiai įvertinti atskirų faktorių reikšmę yra tada, kai ledų sangrūda formuojasi toje pačioje vietos pastoviai. Ledokamšos dydis, o reiškia ir vandens lygio pakilimas, tiesiogiai priklauso nuo plaukiančių ledo lyčių kiekio. Todėl po šaltos be sniego žiemos, kai upių vagose susiformuoja stora ledo danga, maksimalus ledų sangrūdų skaičius didesnis nei po žiemos su aukštesne temperatūra, kai ledo storis nėra didelis (Beltaos, 1995; Kozlov ir kt., 2015).

Plaukiančių ledų lyčių kiekis priklauso nuo ledų išsilaisvinimo sekos upės baseine. Jei ledonešis prasideda tuo pačiu metu visose pagrindinėse baseino upėse, tai formuoja didelė ledų sangrūda. Ir atvirkščiai, jei baseino upėse ledų išsilaisvinimas vyksta iš eilės, ledokamšos galimybė mažėja arba ji būna nedidelė (Kozlov ir kt., 2015).

Aukšta oro temperatūra po ledų sangrūdos suformavimą skatina jos greitą sunaikinimą labiausiai dėl šilto tirpstančio vandens poveikio. Tačiau greitą atšilimą toliau atšilimas iki ledo suyrimo atvirkščiai blogina situaciją ir provokuoja ledokamšą, kuri dėl padidėjusio vandens suvartojimo yra neparuosta ir ledo danga lūžta mechaniskai (Kozlov ir kt., 2015).

Taip pat ledų sangrūdų formavimui daug įtakos turi ledų debitas. Prie mažesnių debitus ledų sangrūdos yra didesnės (aukštesnės), nes ledų lytys turi didesnę tikimybę užkliūti už įvairių kliūčių upėje (Whiteman, 2011).

Ledų išsilaisvinimas ir ledų sangrūdos formavimas, nepastoviose vietose vyksta kur kas sudetingiau ir reikalauja išsamios visų faktorių analizės.

1.6 Ledų sangrūdų modeliavimas

Ledų sangrūdos galiai būtų modeliuojamos sukuriant fizinių arba skaitmeninių (matematinį) modelių. Fiziniai modeliai yra dažniausiai atliekami didelėse ir specialiose laboratorijose, kur reikalingas vandens rezervuaras su galimybę sukurti įvairias tekėjimo sroves, bei įvairia kita įranga. Dažniausiai kaip ledo pakaitalas laboratorijose naudojamas parafinas (Kozlov ir kt., 2015).

Kaip vieną iš laboratorijų pavyzdžių galima pateikti JAV esantį Ledo inžinerijos mokslininkų tyrimų laboratoriją, kuri priklauso JAV armijos inžinerių korpuso hidrologinės inžinerijos centrui (1.6 pav.).

- šaltame regione esančių upių hidraulikos tyrimai;
- upių sistemų fizinis modeliavimas;
- skaitmeninių hidraulinių modelių kalibravimas;
- užtvankų ir šliuzų perprojektavimui sukuriami fiziniai modeliai;
- eksploatacinės charakteristikų tyrimai šaltame ore.

Kadangi tokios laboratorijos yra labai brangios bei spartus informacinių technologijų tobulėjimas nulėmė, kad skaitmeniniai modeliai dažniausiai naudojami modeliuojant ledų sangrūdas. Skaitmeninių modelių pagrindiniai privalumai yra universalumas, tyrimų greitumas ir pigumas (Dumbrauskas ir kt., 2008), o jų tikslumas priklauso nuo surinktų
duomenų patikimumo ir pačio modelio struktūros (Debolskaya, 2009). Užsienio moksliuose straipsniuose yra nurodoma įvairių ledų sangrūdų modelių (Carson et al., 2011):

- CRISSP 2D (Manitoba ir Clarkson Universitetas);
- HEC-RAS (JAV armijos inžinerių korpuso hidrologinės inžinerijos centras);
- ICEJAM (Alberta Universitetas);
- ICEPRO (KGS grupė);
- ICESIM (HATCH energija);
- RIVER1D (Alberta Universitetas);
- RIVJAM (Environment Kanada);
- MIKE 11 (Danijos Hidraulikos Institutas, bet LaSalle Hidraulikos laboratorija sukūrė papildomai ledų sangrūdų modeliavimą).

Pats ledų sangrūdų modeliavimas gali būti atliekamas keliais būdais, juos aprašė 2011 m. Carson ir kt. Jie atliko 3 skirtingų ledų sangrūdų modeliavimo testus su 8 skirtingais modeliais, visų testų rezultatus aprašė ir palygino.

Pirmasis testas buvo atliktas su hipotetiniu (nerealiu) objektu, kurio ilgis buvo 30 km., vaga buvo stačiakampio formos, bei 800 m. pločio, visuose modeliuose ledų sangrūdų modeliavimui reikalingi parametrai buvo pasirinkti analogiški, norint patikrinti esminius modeliavimo rezultatus. Galima pastebėti, kad visų modelių testo rezultatai buvo labai identiški, tad esminių skirtumų modeliuišojant paprastą variantą tarp modelių nepastebėta.

Antrasis testas buvo atliktas su realiu objektu, bei realiai įvykusią ledų sangrūdą 1986 m. Thames upėje, Kanadoje. Testas buvo atliktas su 4 skirtingais modeliais (RIVJAM, ICEJAM, ICESIM, ICEPRO). Testo esmė įvertinti modelių tikslumą, kai modelis yra sukalibruojamas pagal realius ledų sangrūdos metu surinktus duomenys. Šiuo atveju buvo žinomi visi tikslus duomenys įvykus šiai ledų sangrūdai, t.y. debitas, vandens lygiai vykstant ledų sangrūdai, ledo storis, bathmetrija ir t.t. Duomenys buvo suvesti į modelį, bei atliktas kalibravimas pagal realiai susiformavusią ledų sangrūdą, šiuo atveju modelis kalibruojamas keičiant tokius parametrus, kaip ledo dangos Maningo šiurkštumo koeficientą, vidaus trinties kampą tarp ledo lyčių sangrūdos metu, maksimalų leidžiamą tėkmę po sangrūda. Atlikus kalibravimą atliekami modelio skaičiavimai. Gauti rezultatai buvo lyginami, lyginant kiekvieno modelio ledų sangrūdos altitudę su natūriniais matavimais išmatuotomis ledų sangrūdos altitudėmis. Iš rezultatų buvo nustatyta, kad visų modelių rezultatai buvo ganėtinai tikslūs ir labai artimi su natūrinių matavimų reikšmėmis, taip pat galima paminėti, kad toks modeliavimo metodas yra dažniausiai naudojamas, kai žinomi visi tikslūs duomenys susiję su realia ledų sangrūda.
Trečiasis testas, dar vadinamas „aklas testas“, buvo skirtingas nuo kitų testų tuo, kad jo tikslas buvo nepalyginti modelius tarpusavę, o iširšti visų modelių ledų sangrūdų modeliavimo efektyvumą be ankščiau minėto antrame teste kalibravimo. Bandymo metu modeliavimas buvo atliktas su 6 skirtingais modeliais (RIVER1D, HEC-RAS, ICESIM, ICEPRO, CRISSP 2D ir MIKE 11). Testui atlikti buvo naudojama reali ledų sangrūdą, bet modeliuotojai (buvo pasirinkti 6, t.y. kiekvienas skirtingas modeliui) nežinojo arba neturėjo apie šį įvykį jokios informacijos. Vienintelis, kuris disponavo informaciją apie įvykusią ledų sangrūdą, tai buvo Dr. S.Beltaos, bet jis nedalyvavo modeliavimo procese. Kiekvienas modeliuotojas gavo:

- vienodus batimetrijos duomenys;
- atviros upės tėkmės išmatuotus vandens lygius ir debitą, kad modeliuotojai galėtų atlikti modelio kalibravimą ir nustatyti upės vagos šiurkštumo koefficientus, kuriuos galėtų priitaikyti ledų sangrūdų modeliavimui;
- vietas, kur ledų sangrūdos prasideda ir baigiasi;
- ledų sangrūdų metu buvusį debitą;
- ledų storį buvusį prieš formuojantis ledų sangrūdą.


1.7 Potvynių rizikos dėl ledų sangrūdų vertinimas ir priemonės jai švelninti

Norint įvertinti potvynių rizika dėl ledų sangrūdų gali būti atliekami panašūs žingsniai, kaip buvo atlikta su potvynių rizikos valdymu Lietuvoje. Šiuo atveju tai buvo atlikta trim etapais. Pirmojo etapo metu buvo atliktas preliminarus potvynių rizikos įvertinimas, kur buvo išanalizuoti praeityje įvykė stichiniai, katastrofiniai ar didelio mąsto potvyniai. Antrojo etapo metu buvo atliktas modeliavimas ir įvertinta potvynių gręsmė, bei sukurti potvynių rizikos žemėlapiai. Trečiojo etapo tikslas yra sudaryti potvynių rizikos planus (AIVIKS). Taip pat panašų planą aprašė ir Beltaos et al. (2000), kur pirmiausiai reikia atsirinkti vietas kur ledų sangrūdos formuojasi, toliau išnagrinėti šiuos reiškinius, bei surasti būdus jų švelninimui. Remiantis šiais sudarytais etapais potvynių rizikai dėl ledų sangrūdų galime sudaryti panašų planą:
1. Ledų sangrūdos formavimosi prevencinės priemonės, tai yra sangrūdos atsiradimo tam tikroje vietoje priežasčių analizė. Kad tai būtų galima atlikti, metai iš metų turi būti vykdomi stebėjimai ir renkami duomenys apie visus įvykusius potvynius dėl ledų sangrūdų. Turi būti surinkti hidrologiniai, meteorologiniai, bei su ledų sangrūdomis susiję duomenys (White et al., 1996).

2. Žinant ankstesnes ledų sangrūdų formavimosi vietas, bei turint visus istorinius duomenis atliekama išankstinė prognozė (modeliavimas). Kas mums leidžia nuspėti būsimus reiškinius, jei susidarytų tam tikros sąlygos (White et al., 1996; Kozlov ir kt., 2015).

3. Ledų sangrūdų švelninimo būdai, turėtų būti pritaikyti tose teritorijose, kur galėtų didžiausia grėsmė ir rizika.

White et al. (1996) nurodo 6 skirtingas strategijas ledų sangrūdų švelninimui:
1. Siekiant apsaugoti aplinkinius plotus nuo potvynių grėsmės gali būti supilami pylimai, pastatomos užtvankos, sukraunami smėlio maišai, nukreipiama srovė, evakuacija.
2. Siekiant sumažinti ledo kiekį imtis priemonių, kaip šiluminė kontrolė, ledų kaupimo zonos sukūrimas, damba, ledų užtvaros jų sulaikymui
3. Ledų ir vandens pralaidumo padidinimui, reikėtų pertvarkyti vagą.
5. Norint pakeisti ledų sangrūdos vietą tinka būdai, kaip ledo pjovimas ir laužymas, barstymas, vagos pertvarkymas, ledų užtvaros ledams sulaikyti, damba, pylimai.

Aptariant kai kuriuos būdus trumpai, galima pažymėti:
- Vagos pertvarkymas. Reikėtų pertvarkyti, tas vietas kur ledų sangrūdos dažniausiai kaupiasi. Tokie darbai gali būti atliekami siekiant panaikinti kliūtis (kaip seni tiltai, salos ir t.t.), ištiesinant vagą arba nukreipiant vagą taip, kad neliktų kliūčių ledams (Beltaos, 1995).
- Įvairios ledų užtvaros, kurios sulaiko ledus. Jos dažniausiai yra statomos, kur greičiai yra maži (siekia iki 0.6 m/s) arba Frudo skaičius yra mažesnis už 0.08. Taip pat užtvaros gali būti tose vietose, kur ledų sangrūdos ir potvyniai gali padaryti mažai žalos (Beltaos, 1995).
• Barstymas, kai ant ledo barstomas tamsios medžiagos, norint padidinti šilumos sugeriamumą ir pagreinti ledo tirpimą. Toks barstymas dažniausiai atliekamas iš lėktuvo. Barstymui gali būti naudojamas smėlis ar kitokios tamsios medžiagos, kurios yra ekologiškai saugios (Haehnel et al., 1996).

• Jau susiformavusios ledų sangrūdos naikinimas gali būti atliktas su ledlaužiu, sprogimu, bombardavimu iš lėktuvo, termitiniu mišiniu, mechaniškai. Tačiau reikia turėti omenyje, kad bombardavimo bei sprogimo naudojimas yra nepageidautinas dėl didelės žalos žuvininkystei arba dėl arti esančių pastatų (Beltaos et al., 2000; White et al., 1996). Taip pat ledų sangrūdų susidarymo tikimybė gali būti mažinama už HES, kai gali būti keičiamas vandens lygis (Kozlov ir kt., 2015).

• Natūraliai sangrūda naikinama veikiant hidrostatiniam, susikaupusio virš vandens slėgiui, šilumos faktoriams ir pratekamo vandens srauto. Todėl pagrindinė užduotis naikinant sangrūda yra padidinti vandens srovę pratekančią per kamštį, tai pašalina atskiras ledo lytis iš sangrūdos ir mažina jos atsparumą srautui, kas savo ruožtu didina ledokamšos pralaidumą ir tokiu būdu vyksta jos išardimas (Beltaos, 1995).


Jei sangrūda susiformavo keliose upės vagos atšakose, tai pradėti naikinti reikėtų pagrindinėje vagoje, o jau po to atšakoje. Naikinant ledus atšakoje mažėja vandens lygis vagoje, dėl to ledai gali nusileisti iki dugno ir didėja sangrūdos tankis. Tai gali dar labiau apsinkinti naikinimo darbus.

Esant keliomis ledų sangrūdomis vienoje vagoje, naikinti recomenduojama pradėti nuo žemiausios pasroviui.
2. DARBO TIKSLAS IR UŽDAVINIAI

Darbo tikslas – įvertinti vagotvarkos darbų galimą įtaką ledų sangrūdų formavimuisi Neryje nuo P. Vileišio tilto iki žiočių.

Darbo uždaviniai:
1. Sukurti 1D skaitmeninį modelį ledų sangrūdoms modeliuoti.
3. Išanalizuoti gautus rezultatus ir nustatyti, ar vagotvarkos darbai gali daryti reikšmingą įtaką ledų sangrūdų formavimuisi ir galimų vandens lygių sangrūdų metu pokyčiams.
4. Aptarti gautus rezultatus, o esant reikšmingiems pokyčiams pasiūlyti potvynių rizikos mažinimo priemones.
3. TYRIMO OBJEKTAS IR METODAI

3.1 Tyrimo objektas

Tyrimo objektas yra Neries upės ruožas Kauno mieste nuo P. Vileišio tilto iki žiočių (3.1 pav.). Šio ruožo ilgis yra apie 1170 m. Jame yra viena sala, o ruožo gale susilieja dvi didžiausios Lietuvos upės Nemunas ir Neris.

2015 metais Neries dešinjame krante pradėti vagotvarkos darbai (statoma damba, vaga vietomis susiaurinta ir pagilinta). 3.1 pav. aiškiai matyti statybos darbų vieta. Statymo dambų, kateros altitudė yra 27.9-28.0 m, ilgis virš 300 m, o tikslas yra apsaugoti naujai statomą gyvenamųjų namų kvartalą, bei dalį Vilijampolės nuo potvynių. Šis statinis praėsia jau seniau pradėtą tvarkyti, bet nebaigtą dešinį krantą. Yra siekiamą, kad šie atliekami kompleksiniai Neries upės vagotvarkos darbai sudarytų sąlygas stabiliai tėkmei ir pagerintų upės pralaidumą maksimalių potvynių metu, bei sumažintų ledų sangrūdų tikimybę (UAB Infraplanas, 2014).

![3.1 pav. Tyrimo vieta. Neris nuo P. Vileišio tilto iki žiočių (© www.geoportal.lt)](image)

3.2 Tyrimų metodai

Ledų sangrūdų modeliavimui pasirinktas HEC-RAS vienmatis modelis. Jis sukurtas JAV armijos inžinerių hidrologinės inžinerijos centro 1995 m. ir yra nuolat tobulinamas. Darbe yra naudojama 2012 m. 4.1 versija. Lyginant su kitomis nemokomomis ledų sangrūdų modeliavimui tinkamomis programomis HEC-RAS modelis yra vienas iš patogiausių ir tinkamiausių šiems reiškiniams modeliuoti. Ši programa gali atlikti skaičiavimus ir pateikti rezultatus upių vagų tėkmės, su padengtu ledu, ledų sangrūdomis, bei visų šių kombinacijų kartu (Beltaos et al., 2011). Modeliavimui naudojamas nusistovėjusios ir ramios tėkmės
atvejis. O modeliavimas yra pagrįstas vienmatė energijos lygtimi, energijos nuostoliai skaičiuojami pagal Maningo lygtį, o tėkmės suspaudimas įvertinamas pagal greičio aukštį (Dumbrauskas ir kt., 2008).

3.2.1 Teorinis pagrindas

Nusistovėjusios tėkmės atveju vandens paviršiaus išilginis profilis skaičiuojamas nuo vieno skerspjūvio iki kito skerspjūvio sprendžiant energijos lygtį ir taikant iteracijų procedūrą. Energijos lygtis užrašoma taip (3.2 pav.):

\[ h_2 + z_2 + \frac{\alpha_2v_2^2}{2g} = h_1 + z_1 + \frac{\alpha_1v_1^2}{2g} + h_e; \]

čia  \( h_1, h_2 \) - vandens gylis;
\( z_1, z_2 \) - vagos dugno altitudės;
\( \alpha_1, \alpha_2 \) - greičio koeficientai atitinkamuose upės vagos skerspjūviuose;
\( g \) – laisvo kritimo pagreitis;
\( h_e \) - energijos nuostoliai.

Energijos nuostoliai tarp dviejų skaičiuojamųjų skerspjūvių dėl trinties ir tėkmės suspaudimo arba išsiplėtimo apskaičiuojami pagal šią lygtį:

\[ h_e = L\bar{s}_j + C\left| \frac{\alpha_2v_2^2}{2g} - \frac{\alpha_1v_1^2}{2g} \right|; \]

čia  \( L \) – skaičiuojamojo ruožo (tarp dviejų pjūvių) svertinis (pagal debitą) ilgis (m);

3.2 pav. Energijos lyties schema (Dumbrauskas ir kt., 2008)
$S_f$ - trinties nuolydis tarp dviejų svertų;

C – tėkmės suspaudimo/išsiplėtimo koeficientas.

Praktiškai retai pasitaiko, kad upės skaičiuojamas ruožas būtu tiesus, tad upės tėkmė dalijama į kелias dalis (pvz. į pagrindinę vagą ir kaire bei dešinę salpą), tuomet svertinis ruožo ilgis tarp dviejų skerspjūvių yra lygus:

$$L = \frac{L_{ks} \overline{Q}_{ks} + L_{v} \overline{Q}_{v} + L_{ds} \overline{Q}_{ds}}{\overline{Q}_{ks} + \overline{Q}_{v} + \overline{Q}_{ds}},$$

čia $L_{ks}, L_v, L_{ds}$ - skaičiuojamojo ruožo tarp dviejų pjūvių ilgis atitinkamai kairioje salpoje, upės vagoje ir dešinėje salpoje (m);

$Q_{ks}, Q_v, Q_{ds}$ - atskirų tėkmų (kairės salpos, vagos ir dešinės salpos) vidutiniai debitai (m$^3$/s).

Visuose skerspjūviuose tėkmę reikia sudalinti į atskiras dalis, turinčius vienodus šiurkštumo koeficientus, kad apskaičiutume vidutinį greičio koeficientą ir upės pralaidumo koeficientą. HEC-RAS modelyje skerspjūvis dalijamas į dalis tose vietose kur keičiasi Maningo šiurkštumo koeficientas (3.3 pav.).

Pralaidumo koeficientas apskaičiuojamas naudojant Maningo lygtį:

$$Q = KS_f^{1/2};$$

$$K = \frac{1,486}{n}AR^{2/3};$$

čia $K$ – pralaidumo koeficientas (m$^3$/s);

$n$ – Maningo šiurkštumo koeficientas;

$A$ – skerspjūvio plotas (m$^2$);

$R$ – hidraulinis spindulys kiekvienai atskirai skerspjūvio daliai (m).

3.3 pav. Upės tėkmės skerspjūvio dalinimo į atskirus elementus schema (Dumbrauskas ir kt., 2008)
Modelyje yra galimi 3 skirtingi tėkmės režimo atvejai 3.4 pav. (Dumbrauskas ir kt., 2008; US Army..., 2010 b):

1. Audringa tėkmė, kai Frudo skaičius > 1. Šiuo atveju profilių skaičiavimas vykdomas pasroviui.
2. Rami tėkmė, kai Frudo skaičius < 1. Profilių skaičiavimas vykdomas nuo žemutinio link aukštutinio, t.y. prieš srovę.

3.4 pav. Lyginamosios pjūvio energijos grafikas (Dumbrauskas ir kt., 2008)

Bet nusistovėjusios tėkmės skaičiavimai taip pat turi ir ribotumus (Dumbrauskas ir kt., 2008; US Army... , 2010 b):

1. Tėkmė nusistovėjusi, nėra laiko komponento (1) lygtyje.
2. Tėkmė lėta kintanti.
3. Tėkmė yra vienmatė, greičiai gali būti apskaičiuoti tik tėkmės kryptimi.


Upės padengtos ledu pralaidumo koeficientas gali būti apskaičiuotas naudojant Maningo lygtį:

\[ K_i = \frac{1.486}{n_k} A_i R_i^{2/3}, \]  

čia \( K_i \) - upės padengtos ledu pralaidumo koeficientas (m³);
\( n_k \) - kombinuotas Maningo šiurkštumo koeficientas;

\( A_l \) - skerspjūvio plotas po ledo danga (m²);

\( R_l \) - hidraulinis spindulys įvertinant, kad yra ledo danga (m).

Kombinuotas Maningo šiurkštumo koeficientas ledu padengtos upės vagos apskaičiuojamas naudojant Belokono-Sebanejievo formulę:

\[
 n_k = \left(\frac{n_i^{3/2} + n_l^{3/2}}{2}\right)^{2/3};
\]  

\[ (7) \]

čia

\( n_v \) - vagos Maningo šiurkštumo koeficientas;

\( n_l \) - ledo Maningo šiurkštumo koeficientas.

Vykstant ledų sangrūdai, jos slėgis persiduoda į upės salpas. Šie slėgiai modelyje įvertinami naudojant ledų sangrūdų jėgų balanso lygtį:

\[
 \frac{d(\bar{\sigma}, t)}{dx} + \frac{2\bar{\tau}, t}{B} = \rho' g S_w t + \tau_i;
\]

\[ (8) \]

čia

\( \bar{\sigma} \) - išilginis įtempis (Pa);

\( t \) – susikaupusios ledų sangrūdos storis (m);

\( \tau_b \) - salpų pasipriešinimas įtempiams (Pa);

\( B \) – susikaupusios ledų sangrūdos plotis (m);

\( \rho' \) - ledo tankis (kg/m³);

\( g \) – laisvojo kritimo pagreitis (m/s²);

\( S_w \) - vandens paviršiaus nuolydis;

\( \tau_i \) - įtempis vykstantis po ledu dėl tekančio vandens (Pa).

Šioje lygyje ledų sangrūdoje esantys slėgiai yra subalansuoti su išoriniais slėgiais, kurie veikia ledų sangrūdą, o ledų sangrūdų profilių skaičiavimai atliekami pasroviui.

### 3.2.2 Modelio kūrimas

Modelis kuriamas laikantys nurodytų taisyklių HEC-RAS apraše (2010 a). Jų eiliškumas yra toks:

- Pradedamas naujas projektas.
- Suvedama geometrija.
- Suvedamos pradinės ir pakraštinės sąlygos.
- Atliekami skaičiavimai.
- Gauname rezultatus, kurie yra peržiūrėmi.

3.2.3 Modelio kalibravimas

Modelis yra kalibruojamas prieš vagotvarkos darbus sukurtame projekte, įvedus natūriniais matavimais išmatuotą debitą, vandens paviršiaus nuolydį bei išmatuotas vandens lygio altitudes. Šiuo atveju ir visais kita, modelyje skaičiavimai esant ramiai (subcritical) tėkmei, kai Frudo skaičius yra < 1, o bangos sklidimo greitis yra mažesnis už vandens tėkmės greitį. Profilių skaičiavimai yra atliekami nuo žemutinio link aukštinio. Modelis kalibruojamas keičiant upės skersiniuose pjūviuose vagoje nustatytus Maningo vagos šiurkštumo koeficientus \( n_v \), tol, kol modelio apskaičiuoti vandens lygiai tampa artimi (pagal norimą tikslumą) išmatuotiems vandens lygiam.
4. DARBO EIGA IR REZULTATAI

4.1 Duomenų rinkimas


Pirmojo projekto, prieš vagotvarkos darbus, sukurta vagos geometrija ruožui nuo Neries žiočių iki Kleboniškio tilto, kurio ilgis 5656 m ir yra 74 skerspjūvių, o tarpai tarp jų vyrauja kas 60-150 m. (4.1 pav.). Šie duomenys yra gauti perkeliant juos su ArcGIS sąsaja HEC-GeoRAS iš skaitmeninio reljefo modelio.

![4.1 pav.](image1.jpg)

4.1 pav. Neries nuo žiočių iki P. Vileišio tilto prieš vagotvarkos darbus geometrijos vaizdas

Antrasis modeliavimui reikalingas projektas (po vagotvarkos darbų), buvo kuriamas ant pirmojo projekto geometrijos duomenų, keičiant skerspjūvių geometrija pagal UAB „Antra kryptis“ Kauno Vilijampolės rajono Brastos kvartalo projekto brėžinius (4.2 pav.), bei atlikus natūrinius matavimus su GPS imtuvu Trimble TSC2, pasitikslinant Neries upės dugno, bei atskirų statybos vietos taškų altitudes.

![4.2 pav.](image2.jpg)

4.2 pav. UAB „Antra kryptis“ projektinio brėžinio vaizdas
4.2 Lauko tyrimai

2015 m. vasarą buvo atlikti natūriniai matavimai. Matavimo metu upės vandens lygis buvo labai žemas, tad buvo galimybė daug kur patikslinti vagos dugno altitudes, ypač saloje ir aplink jąatsiverusioje teritorijoje. Lauko matavimo metu išmatuoti Neries vandens lygiai išilgai tiriamo ruožo nuo Kleboniškio tilto iki žiočių (4.3 pav.) ir tuo metu tekėjęs debitas. Neries debitas tuo metu buvo 83 m³/s (modelio kalibravimui). Surinkti duomenys vėliau buvo suvesti į modelį.

<table>
<thead>
<tr>
<th>Atstumas nuo žiočių m</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5466</td>
<td>21.54</td>
</tr>
<tr>
<td>4948.261</td>
<td>21.24</td>
</tr>
<tr>
<td>3908.234</td>
<td>21.035</td>
</tr>
<tr>
<td>3049.894</td>
<td>20.77</td>
</tr>
<tr>
<td>2930.527</td>
<td>20.69</td>
</tr>
<tr>
<td>1972.175</td>
<td>20.34</td>
</tr>
<tr>
<td>1876.734</td>
<td>20.32</td>
</tr>
<tr>
<td>1649.328</td>
<td>20.19</td>
</tr>
<tr>
<td>1253.982</td>
<td>20.09</td>
</tr>
<tr>
<td>1128.852</td>
<td>19.98</td>
</tr>
<tr>
<td>986.3644</td>
<td>19.59</td>
</tr>
<tr>
<td>751.7067</td>
<td>19.12</td>
</tr>
<tr>
<td>431.7885</td>
<td>19.03</td>
</tr>
<tr>
<td>309.7058</td>
<td>19.01</td>
</tr>
<tr>
<td>188.4377</td>
<td>18.97</td>
</tr>
<tr>
<td>33.79234</td>
<td>18.92</td>
</tr>
</tbody>
</table>

4.3 pav. Išmatuoti vandens lygiai

Vandens lygių nustatymams buvo naudojamas GPS imtuvas Trimble TSC2. Jo vertikalios padėties nustatymo tikslumas yra 3.5 mm + 0.4 ppm RMS. Detalės prietaiso charakteristikos ir veikimo principas plačiai aprašyt i interneto svetainėje www.trimble.com. Kad matavimo duomenys būtų tikslūs būtina, jog imtuvas tuo momentu turėtų ryšį su ne mažiau kaip 4 palydovais ir per mobilų telefoną būtų sujungtas su bazine stotimi, iš kurios realiu laiku atsisiunčiamos diferencinės pataisos. Gauti duomenys iš GPS imtuvo perkeliami į kompiuterį, bei suvedami į HEC-RAS modelį.

skirtingose vietose, bei galiausiai yra apskaičiuojamas debitas. Šis bandymas atliekamas kelis kartus norint įsitikinti, kad rezultatai teisingi.

4.4 pav. Debito matavimas prie Kleboniškio tilto su įtvitintu akustiniu doplerio matuokliu (ADCP)

4.3 Hidrodinamikos modelio kūrimas


HEC-RAS modelio skaičiavimo pradžiai turi būti nusakytais pradinės ir pakraštinės sąlygos. Pradinė sąlyga pirminiais skaičiavimams ruožo pradžioje 2015 m. natūrinii matavimų metu išmatuotas debitas (Q), kuris yra 83 m$^3$/s. Kaip pakraštinę sąlygą ruožą pradžioje ir pabaigoje naudojame vandens paviršiaus išilginį nuolydį, kuris yra apskaičiuojamas pagal formulę:

$$i = \frac{\Delta h}{l};$$

(9)
čia $i$ – vandens paviršiaus išilginis nuolydis, $\%$;
$\Delta h$ – vandens paviršiaus altitudžių skirtumas tarp ruožo pradžios ir pabaigos, m;
$l$ – ruožo ilgis, m.
Šiuo atveju vandens paviršiaus išilginis nuolydis ruožo pradžioje yra 0.00035 m/m, o ruožo pabaigoje 0.00093 m/m.
Nusakius pradines ir pakraštinės sąlygas buvo atlikti pirminiai skaičiavimai projekte „prieš vagotvarkos darbus“. Atliekus skaičiavimus, pasirodė, kad skerspjūviai parinkti per retai. Tą nurodo modelis skaičiavimo rezultatuose, taip pat pateikdamas priežastį, kodėl reikia tankinti skerspjūvius. Modelis gan universalus, kadangi pats sukuria papildomus skerspjūvius, tarp jau įvestų pagal batimetrinius duomenis ir vartotojo nurodytą pageidaujamą minimalų atstumą tarp jų. Skerspjūviai tankinami tol, kol modelis skaičiavimo rezultatų pranešimų sąraše nebeteikia pastabų kad rekomenduojama mažinti atstumą tarp skerspjūvių, tad galutinis vidutinis atstumas tarp skerspjūvių gavosi apie 10 m. Kuo mažesnis debitas ir mažesnis tėkmės viršaus plotis, tuo mažesni atstumai tarp skerspjūvių. Tankinimo procedūra atlikta tik mus dominančiame ruože nuo Neries žiočių iki P. Vileišio tilto (4.5 pav.).

4.5 pav. Neries nuo žiočių iki P. Vileišio tilto prieš vagotvarkos darbus modelio grafinis vaizdas

Toliau yra sutvarkoma antrojo projekto „po vagotvarkos darbų“ geometrija, naudojantis UAB „Antra kryptis“ brėžiniais (4.6 pav.) ir matavimais.

4.6 pav. Neries nuo žiočių iki P. Vileišio tilto po vagotvarkos darbų modelio grafinis vaizdas
4.4 Modelio kalibravimas

Modelis yra kalibruojamas naudojant projektą „prieš vagotvarkos darbus“. Be jau suvestų į modelį lauko tyrimų metu išmatuoto debito 83 m³/s ir vandens paviršiaus nuolydžio, dar įvedamos ir išmatuotos vandens lygio altitudės. Atlikus skaičiavimus, gautų rezultatų išilginiame profilyje paveikslo (4.7 pav.) galima matyti, kad natūrinių matavimų vandens lygiai kai kur žymiai (dėl mastelio to profilyje nesimato) skiriasi nuo modelio suskaičiuoto vandens paviršiaus, todėl modelį reikėjo kalibruotį.

![4.7 pav. Išilginis ruožo pjūvis su pavaizduotais vandens lygiais prieš kalibravimą](image)

Modelis kalibruojamas keičiant upės skersiniuose pjūviuose, kur didžiausi skirtumai tarp matuotų ir modeliuotų vandens lygių keičiant pradinius iš lentelių parinktus Maningo šiurkštumo koeficientus \( n_v \) (4.8 pav.), kol, kol modelio apskaičiuoti vandens lygiai tampa artimi (pagal norimą tikslumą – mūsų atveju ne didesnis kaip 5 cm) išmatuotiems vandens lygiams (4.9 pav.).

![4.8 pav. Vienas iš skersinių pjūvių su pavaizduotais Maningo šiurkštumo koeficientais skirtinguose ruožuose](image)
4.9 pav. Išilginis ruožo pjūvis su pavaizduotais vandens lygiais po kalibravimo

Atlikus kalibravimą beveik visame ruože nuo P. Vileišio tilto iki žiočių upės dugno šiurkštumo koeficientai skirtinguose pjūviuose parinkti tarp 0.02-0.022 ir tik arčiau P. Vileišio tilto jie yra didesni - apie 0.032-0.040 (4.10 pav.), nes toje vietoje jau ir vizualiai lauko tyrimų metu matėsi, kad dugne daug stambių riedulių ir išlikę senų polių liekanos. O ruože nuo P. Vileišio tilto iki Kleboniškio tilto, kur mes nedarėme papildomo interpoliavimo, upės dugno šiurkštumo koeficientai taip pat vyrauja tarp 0.02-0.04.

4.10 pav. Maningo šiurkštumo koeficientai vagoje nuo Neries žiočių iki P. Vileišio tilto

Atlikus kalibravimą projektui „Prieš vagotvarkos darbus“ projekto šiurkštumo koeficientai perkeliami ir į projektą „po vagotvarkos darbų“. Kadangi dėl vagotvarkos darbų,

### 4.5 Numatytų scenarių modeliavimas

Modeliavimą atliekame pagal scenarijus: trys skirtinės ledo storiai ir keturi debitai. 

Skaičiavimams atlikti naudosime šiuos debitus:

- 2015 m. natūrinų matavimų metu išmatuotą debitą, kuris yra 83 m³/s (pagal šį debitą vykdytas modelio kalibravimas).
- 2016 m. vasario 3 d. išmatuotą pavasario potvynio debitą - 391 m³/s, (kontrolinis skaičiavimas). 4.11 pav. ir 4.12 pav. pavaizduota vandens lygių ir debitų kaita ties Kleboniškiu pagal hidrometeorologijos tarnybos internete pateiktus duomenis.

![Vandens lygis Neryje ties Kleboniškiu nuo 2016 01 14 iki 2016 02 11](www.old.meteo.lt)

**4.11 pav.** Vandens lygis Neryje ties Kleboniškiu nuo 2016 01 14 iki 2016 02 11 (© www.old.meteo.lt)

![Debitai 2016 vasario 3 d.](www.old.meteo.lt)

**4.12 pav.** Debitai 2016 02 03 įvairiu paros laiku Kleboniškio VMS
1% ir 10% tikimybės maksimalaus pavasario potvynio debitų, kurie yra apskaičiuoti pagal Jonavos VMS daugiamečius duomenis ir pagal baseino ploto pokyči pernešti į modelio vietą. Jie gauti atitinkamai – 1313 ir 2250 m³/s (4.13 pav.).

<table>
<thead>
<tr>
<th>%</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>3335</td>
</tr>
<tr>
<td>0.2</td>
<td>2991</td>
</tr>
<tr>
<td>0.5</td>
<td>2559</td>
</tr>
<tr>
<td>1</td>
<td>2250</td>
</tr>
<tr>
<td>2</td>
<td>1955</td>
</tr>
<tr>
<td>5</td>
<td>1584</td>
</tr>
</tbody>
</table>

4.13 pav. Apskaičiavoti P% tikimybės maksimalūs pavasario potvynio debitai m³/s, pagal Jonavos VMS duomenis

Reikia paminėti, kad mes neturėjome vandens lygio už ledų sąvados ir vandens paviršiaus išilginio nuolydžio prie debitų 391 m³/s, 1313 m³/s ir 2250 m³/s, tad atliekant skaičiavimus ir modeliuojant buvo keičiamas vandens paviršiaus išilginis nuolydis (pakraštinė sąlyga) ruožo pabaigoje priartėjimo būdu.

Darbe nagrinėjami trys skirtingi galimi ledo storiai (h, cm) t.y. 20, 30 ir 40 cm. Duomenų apie ledo storį Lietuvos upėse nepavyko rasti, tai orientavomės į literatūroje skelbiamus duomenis apie ledo storį ežeruose, kur maksimumai varijuoją apie 60 cm, o vidutiniai ledo storiai apie 40 cm (Kilkus ir kt., 2010), taip pat konsultuotasi su hidrometeorologijos tarnybos specialistais.

Be ledo storio dar pasirinkome su ledų sąvada ar ledo danga susijusius parametrus pagal užsienio literatūra, bei HEC-RAS (2010 a) aprašo rekomendacijas:

- ledo dangos Maningo šiurkštumo koeficientai (n₁) yra pasirenkami skirtingi kiekvienam ledo storiui. Kai ledo storis 0.04 m jis yra 0.06, kai 0.03 m - 0.05 ir kai 0.02 m - 0.04. Tai yra padaryta atsižvelgiant į užsienio literatūros rekomendacijas (White,1999), bei žinant, kad ledo dangos Maningo šiurkštumo koeficientas yra mažesnis, esant plonesniam ledo storiui (Beltaos, 1995);
• ledo poringumą 0.65, ribos 0.4–0.65 (Beltaos et al., 2013), 0.35–0.8 (White, 1999).
• vidaus trinties kampas tarp ledo lyčių, formuojantis ledų sangrūdoms (φ) priimamas 45°, ribos 20°–60° (White, 1999);
• koeficientas (K₁) įvertinantis sangrūdos šoninį ir išilginį slėgį - 0.33 (Beltaos et al., 2013);
• maksimalus leidžiamas tėkės greitis po ledų sangrūdą (V_max) - 1.5 m/s (Beltaos et al., 2013);
• ledo sunkio jėga, 0.916.

Nagrinėjant ledų sangrūdas mes turime pasirinkti vietas, kur jos dažniausiai gali susidaryti arba tas, kurios mums būti aktualios (Beltaos, 2011). Šiuo atveju nagrinėjame ruože ledo sangrūdų labiausiai tiktėtinos prie bevardės salos, o mūsų tyrimui aktuali vieta ties įrengti krantine, todėl modeliuojamo ruožo pradžia priimama priekaišta prieš bevardę salą, o pabaiga šiek tiek už naująjį pastatytos dambos, t.y. ruožas nuo 369 m iki 976 m nuo žiočių. Pasirinkti parametrai yra suvedami į modelį (4.14 pav.) ir yra atliekami skaičiavimai projektuose „prieš vagotvarkos“ ir „po vagotvarkos darbų“ pagal skirtingus scenarijus.

### 4.14 pav. Parinktų ledo duomenų suvedimas į modelį
4.6 Gauti rezultatai ir jų aptarimas

4.6.1 Ledų sangrūdų formavimasis

HEC-RAS programai atlikus skaičiavimus, rezultatus gauname lentelių ir grafiniame pavidale. Patogiau analizuoti grafinį vaizdą. Pirmiausiai aptariame ledų sangrūdų formavimą esant skirtingiems ledo storiams ir debitams (4.15 pav.).

![Ledų sangrūdų formavimas](image)

**4.15 pav.** Susiformavusio ledų sangrūdos esant skirtiems ledo storiams: a) 0.2 m; b) 0.3 m; c) 0.4 m

Iš paveikslono lyginant projektus „prieš vagotvarkos darbus“ ir „po vagotvarkos darbus“ galima spręsti, kad ledų sangrūdos susidaro esant 83 m³/s ir 391 m³/s, kai tuo tarpu prie 10% tikimybės debito fiksuojama smulki sangrūda prie bevandės salos, o prie 1% tikimybės sangrūda iš viso nebesiformuoja. Ledų sangrūdų nesiformavimą prie didesnių debitų galima...
paaškinti tuo, kad kylant vandens lygiui ledo lytis turi mažesnį tikimybę užkliūti už salos. Taip pat galima pastebėti, kad prieš ir po vagotvarkos darbų ledų sangrūdos beveik analogiškos, bet po vagotvarkos darbų ledų sangrūda šiek tiek didesnė prie salos, kas gali būti susiję su šiek tiek susiaurėjusia vaga.


4.6.2 Patvankų dydžiai

Rezultatai susiję su patvankų skirtumais projektuose „Prieš vagotvarkos darbus“ ir „Po vagotvarkos darbų“ esant skirtingiems debitams ir ledo storiams, pateikti 1 lentelėje.

<table>
<thead>
<tr>
<th>Debitas, m³/s</th>
<th>Prieš vagotvarkos darbus</th>
<th>Po vagotvarkos darbų</th>
<th>Patvankų skirtumas prieš ir po vagotvarkos darbų, ΔHpt, m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>patvanka, Hpt, m</td>
<td>patvanka, Hpt, m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esant ledo storiui, m</td>
<td>Esant ledo storiui, m</td>
<td>Esant ledo storiui, m</td>
</tr>
<tr>
<td>83</td>
<td>1.97</td>
<td>1.95</td>
<td>-0.02</td>
</tr>
<tr>
<td>391</td>
<td>1.68</td>
<td>1.67</td>
<td>-0.01</td>
</tr>
<tr>
<td>1313</td>
<td>1.3</td>
<td>1.36</td>
<td>0.06</td>
</tr>
<tr>
<td>2250</td>
<td>1.33</td>
<td>1.44</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Aptariant rezultatus 1 lentelėje ir lyginant patvankų aukščius galima pastebėti, kad didžiausios patvankos susidaro prie debitų 83 m³/s ir 391 m³/s (4.16 ir 4.17 pav.) esant ledo storiumi 0.4 m, šių debitų vandens lygių skirtumai yra beveik analogiški ir yra 2.31 m ir 2.29 m prieš vagotvarkos darbus, bei 2.32 m ir 2.30 m po vagotvarkos darbų. Esant skirtingiems ledo storiams aukščiausios patvankos susidaro prie 83 m³/s debito, tai gali būti susiję su mažesniu upės vandens lygiu ir didesne tikimybe ledo lytims užkliūti už vagoje esančių kliūčių. Didesnės patvankos taip pat susidaro esant storeniam ledui.

Įvertinant patvankų skirtumus prieš ir po vagotvarkos darbus, iš rezultatų matosi, kad prie debito 83 m³/s ir 391 m³/s (4.16 pav. ir 4.17 pav.) patvankų skirtumai svyroja apie kelis
centimetrus, o prie 1313 m³/s (4.18 pav.) debito esant skirtingiems ledo storiams patvankų skirtumai svyruoja nuo 6 iki 9 cm, kai tuo tarpu prie 2250 m³/s debito šie skirtumai dar šiek tiek didesni nuo 11 iki 13 cm.

4.16 pav. Patvankų dydžiai ir skirtumai prieš ir po vagotvarkos darbų, kai Q=83 m³/s

4.17 pav. Patvankų dydžiai ir skirtumai prieš ir po vagotvarkos darbų, kai Q=391 m³/s

4.18 pav. Patvankų dydžiai ir skirtumai prieš ir po vagotvarkos darbų, kai Q=1313 m³/s
Kadangi reikšmingų vandens lygių skirtumų lyginant dviejų projektų rezultatus tarp patvankų nenustatyta, tad papildomų potvynių rizikos mažinimo priemonių nereikia, bet kaip vieną iš galimų būdu ledų sangrūdų sumažinimo tikimybei tiriamame ruože galima nurodyti vandens lygių keitimą Kauno HE pagalba.
IŠVADOS

1. Įvertinus atliktų medeliavimo scenarijų rezultatus, konstatuojame, kad numatomų atlikti vagotvarkos darbų įtaka potvynių rizikai, siejamai su ledo sangrūdomis, yra nereikšminga ir dėl to, kokių nors papildomų potvynio rizikos mažinimo priemonių imtis nereikia.

2. Ledų sangrūdos dažniau formuojasi esant mažesniems upės tėkmės debitams ir didesniam ledo storium esant maksimaliems debitams ir tokiems patiems ledo storiams.

3. Didesnė įtaką formuotis ledų sangrūdos ruože tarp P. Vileišio tilto ir Neries žiočių turi žemiau tilto esanti sala, nei atlikti vagotvarkos darbai.

LITERATŪRA


PRIEDAI

1 priedas UAB „Antra kryptis“ projektinis brėžinys pilnas vaizdas
2 priedas UAB „Antra kryptis“ projektinio brėžinio skersinis pjūvis (http://www.pilotas.lt/)
DARBO APROBACIJA