Course code	Course group	Volume in ECTS credits	Course valid from	Course valid to	Reg. No.
BIO 5001		6			

DESCRIPTION OF THE COURSE TITLE (For Group C)

Course type (compulsory or optional)	Compulsory
Course level (study cycle)	I cycle
Semester the course is delivered	Spring
Study form (face-to-face or distant)	Face-to-face

Short course annotation in Lithuanian (up to 500 characters)

Course type compulsory

Course level (study cycle) II cycle Semester the course is delivered autumn Study form (face-to-face or distant) face-to-face Course title in Lithuanian Molekulinė bilogija

Course title in English

Molecular biology

Short course annotation in Lithuanian (up to 500 characters)

Įsisavinti organizmų funkcionavimo ir paveldimumo molekulinius pagrindus, susipažinti su įvairių organizmų genomais, išnagrinėti nukleorūgščių organizaciją ląstelėje, įsisavinti genetinės informacijos perdavimo ir jos realizacijos mechanizmus: DNR ir chromosomų replikacija, genų ekspresijos reguliaciją, RNR biosintezę bei jos brendinimą, baltymų biosintezę, jų postransliacinį modifikavimą, temperatūrinio šoko baltymų sintezės mechanizmus, pagrindinius eukariotinių ląstelių signalo perdavimo kelius ir būdus.

Short course annotation in English (up to 500 characters)

The course is designed to acquaint the students with the molecular fundamentals of functioning and hereditability of organisms, to acquaint them with the genomes of different organisms, to investigate organization of nucleoacids in the cell. The students are acquainted with the following mechanisms of transmission of genetic information and its realisation: DNA and chromosome replication, regulation of gene expression, RNA biosynthesis and its maturation, biosynthesis of proteins and their post-translational modification, mechanisms of the heat shock of protein synthesis, major ways and methods of transmission of the signal of eukaryotic cells.

Prerequisites for entering the course

General genetics, biology of cells, biochemistry

Course aim

To acquaint the students with the main objects of investigation used in molecular biology, methods of investigation and to discuss major problems of molecular biology and achievements in this field.

Links between the study programme outcomes, the course outcomes and the criteria of learning

achievement evaluation

Study programme outcomes	Course outcomes	Criteria for learning achievement evaluation
--------------------------------	--------------------	--

Highest	9-10	Are capable of solving molecular biology problems and of thinking analytically. Have no difficulty in using molecular biology terminology, understand basic laws and regularities of molecular biology, perform at least 90% of tasks in the final work; answers to the questions and solutions of the problems are acceptable, motivated and well-reasoned.
Average	7-8	More than two thirds of all the tasks are performed; answers to the questions and solutions of the problems are acceptable, motivated and well-reasoned.
Necessary minimum	5-6	A necessary minimum level of achieving the outcomes; more than half the tasks are performed; answers to the questions are in essence acceptable, the most necessary theoretical knowledge are demonstrated.
Unsatisfactory	4-2	Answers to the questions are unacceptable; the tasks are performed wrongly; neither minimum necessary theoretical knowledge nor practical skills are demonstrated.

Link between course outcomes and the content					
Course outcomes	Content (topics)				
The students will acquire knowledge of the nature of genetic material, a spatial and molecular structure of nucleoacids, the molecular structure of separate parts of chromosomes, the peculiarities of the genome of somatic cells, dimerisation of molecules, proteins of cell interaction and signal transmission, molecules of cell adhesion, peculiarities of regulation of eukaryote gene expression, the role of miRN in regulation of gene expression, maturation (processing) of RNR and the importance of this process to RNR biological functions, proteins of heat (temperature) shock and their biological significance, synthesis and functions of prion proteins, the structural organisation of prion proteins and their genes, the variety and specific specificity of prion	 Review of the development of molecular biology. Nature of genetic material. Hereditary molecules. DNA primary sequence. Spatial structure of nucleoacids. DNA species, function. Structure of the gene of eukaryotes and elements regulating it. The molecular structure of chromosomes and its significance. Chromatin of chromosomes, chromosome domains, the structure of chromatin in the interphase nucleus of eukaryotes, peculiarities of prokaryote chromosomes, heterochromatin, chromosomes of specific structure, special parts of the chromosome, artificial chromosomes. Peculiarities of the genome of somatic cells. General peculiarities of transmission of the cell signal. Cell interaction and signal transmission molecules. DNA reparation, recombination and transposition 				
Upon completion of the study course the student shall perceive the following: 1. What the spatial structure of	of eukaryotes and prokaryotes. 8. DNA transcription of eukaryotes and prokaryotes, its stages, and regulation.				
nucleoacids, DNA species and functions, the structure of eukaryote genes and elements regulating it, and the peculiarities of the genome of the somatic cells are.	 9. Genetic control of DNA replication of eukaryotes and prokaryotes. 10. Transmission of genetic information of eukaryotes in the cells. 11. Genetic control of DNA synthesis of eukaryotes. 				

Study (teaching and learning) methods

Lectures and practical classes, seminars, independent work.

Methods of learning achievement assessment

The assessment of the students' knowledge is carried out in the cumulative system and consists of three components: intermediary testing and an examination in writing providing each student with the cards containing similar questions. The results of the examination are assessed only after all practical works have been completed and accounted for, as well as after the intermediary testing has been carried out.

Distribution of workload for students (contact and independent work hours)

45 hours of lectures

15 hours of laboratory work

3 hours of assessment of knowledge

82 hours of independent work

Structure of cumulative score and value of its constituent parts

The assessment of the student's knowledge is carried out in the cumulative system and consists of three components:

The colloquium after laboratory works and practical work have been completed accounts for 17% of the final grade.

Intermediary testing accounts for 33% of the final grade. The examination accounts for 50% of the final grade.

No.	Publication vear	Authors and the title of publication	Publishing house	Number of copies in				
				University	Self-study	Other		
	ycai	or publication		library	rooms	libraries		
	Basic material							
1.	2012	David Clark et. al., Molecular biology	USA	1				
2.	2011	L. H. Hartwel. Genetics. From Genes to Genomes	McGRAW – HILL	2	unavailable	5		
3.	2005	Ed. D.P.Clark. Elsevier, Molecular Biology. Understanding the genetic revolution	London	2	unavailable	3		
4.	2008	Rančelis V. Augalų genetika	Kaunas. "Technologija"	3	1	10		
		A	dditional literatur	е				
1. 2.	2005. 2002.	Mildažienė ir kt. Ląstelės biologija. Miceikienė I., Paulauskas A. ir kt. Genetikos praktikumas. DNR polimorfizmo tyrimo metodai.	Kaunas Kaunas	10	5	15		

Recommended reference materials

Course programme has been prepared by: Professor Dr. Habil. Aniolas Sruoga