Course code	Course group	Volume in ECTS credits	Course hours	
FIZ1008	С	6	160	

Course type (compulsory or optional)	Compulsory
Course level (study cycle)	Bachelor
Semester the course is delivered	Autumn
Study form (face-to-face or distant)	Face-to-face

Course title in Lithuanian

FIZIKA II (ELEKTROMAGNETIZMAS IR OPTIKA)

Course title in English

PHYSICS II (ELECTROMAGNETISM AND OPTICS)

Short course annotation in Lithuanian

Dalyką sudaro dvi pagrindinės dalys. Pirmojoje dalyjej supažindinama su elektromagnetizmo pagrindais: elektrostatika, magnetostatika, elektromagnetine indukcija, Maksvelio lygtimis, elektromagnetinėmis bangomis. Antroji kurso dalis skirta fizikinei ir geometriniai optikai: optinėms bangoms, terpių optinės savybėms, šviesos interferencijai ir difrakcijai, geometrinės optikos dėsniams, optiniams prietaisams.

Short course annotation in English

This course is divided into two components. The first component is basic electromagnetism: the laws of electrostatics, magnetism and electromagnetic induction, Maxwell's equations, electromagnetic waves. The second component of the course gives a general coverage of physical and geometrical optics: introduction to light as an electromagnetic wave, the properties of optical media, light interfaces and diffraction, geometric optics lows, optical instruments.

Prerequisites for entering the course

Calculus I, Calculus II, Physics I

Course aim

The main goal is to develop an understanding of basic laws of electromagnetic and optic phenomena, to teach to apply acquired knowledge to solve simple problems of electromagnetism and optics, to form basic skills of electrical and optical measurements.

Links between course outcomes and criteria of learning achievement evaluation

Course outcomes	Criteria of learning achievement evaluation		
To able to explain the interaction between	Explains charge conservation law, Coulumb's law,		
charges, the properties of electric field in	electric field of point charge, Gauss's law, charge		
vacuum, the electric field interaction with	potential energy, plane capacitors, electric current,		
dielectrics and conductors, dc circuits and ac-	Ohm's law, electric power, alternating current,		
circuits.	Kirchhoff's rules, RC circuit		
To able to explain magnetic field properties,	Explains properties of magnetic field, magnetic field		
interaction with moving charge and magnetic	of straight current, point charge moving in magnetic		
field, electromagnetic induction phenomenon.	field, magnetic field of solenoid, magnetic moment,		
	mass spectrometer, Faraday's low, Lenz's law, electric		
	generators.		
	Explains properties of harmonic electromagnetic		
	waves, speed of light, Huygen's principle, constructive		
To able to explain optical wave propagation in	and destructive interference, Young's dauble slit		
vacuum and dielectrics, light interference and	experiment, diffraction by a single slit, diffraction		
diffraction phenomenon, principles of operation	gratings, spectrometer, index of refraction, refraction		
of simple optical devices.	law, thin lenses, ray tracing, magnifying glass,		
	compound microscope, telescopes, chromatic and		
	spherical aberrations.		
To able to perform simple electrical and optical	Lab reports		
measurements, to perform measurements with			

Science Workshop interface and DataStudijo	
software.	

Content (topics)

Content (t	(opics)
1. Ele	ectric charge.
2. Th	ne electric field.
3. Ca	apacitors.
4. Ele	ectric field in dielectrics.
5. Ele	ectric current and dc circuits.
6. Th	ne magnetic field.
7. Ch	harge movement in a electromagnetic field.
8. Ma	agnetic field in matter, dia and paramagnetism.
9. Ele	ectromagnetic induction
10. Ac	c current
	ectromagnetic waves and optical waves.
12. Lig	ght polarization
13. Lig	ght interference.
14. Lig	ght diffrakcion
15. Ge	eometrical optics, optical instruments.
Practical w	work (contents):
Laboratory	y works: Kirchhoff's rules, LRC circuit, Ampere's law, Light reflection and refraction laws,

Laboratory works: Kirchhoff's rules, LRC circuit, Ampere's law, Light reflection and refraction laws, Monochromatic light diffraction.

Distribution of workload for students (contact and independent work hours)

Lectures – 45 hours, seminars – 15 hours, laboratory works – 15 hours, individual work – 85 hours. Total 160 h.

Structure of cumulative score and value of its constituent parts

Final assessment sums the assessments of written final examination (50%), written mid-term examination (20%) and assessment of practical works: seminars (15%), laboratory (15%).

Recommended reference materials

No.	Publication year	Authors of publication and title	Publishing house	Number of copies in				
				University library	Self-study rooms	Other libraries		
	Basic materials							
1.	2004	Girdauskas V., Elektra ir magnetizmas: paskaitų iliustracijos	Course material in intranet					
2.	2008	Girdauskas V., Optika: paskaitų iliustracijos	Course material in intranet					
3.	1989	Tamašauskas A., Vosylius J. <i>Fizika 2T.</i>	Mokslas	30				
Supplementary materials								
1.	2010	A.Bogdanovičius, Fizikos pagrindai inžinerijoje. 2 dalis	Vilnius technika		1	10		

Course programme designed by

Assoc. Prof. Dr. Valdas Girdauskas, Faculty of Natural Sciences, Department of Physics