Course code	Course group	Volume in ECTS credits	Course hours
BIO 6007	С	6	160

Course type (compulsory or optional)	Optional		
Course level (study cycle)	Master		
Semester the course is delivered	Autumn		
Study form (face-to-face or distant)	Face-to-face		

Course title in Lithuanian BIOTECHNOLOGIJA MEDICINOJE

Course title in English BIOTECHNOLOGY FOR MEDICINE

Short course annotation in Lithuanian

Dalykas skirtas supažindinti studentus su moderniais biotechnologijų taikymais medicinoje. Studijų metu studentai įgys žinių apie genų terapijos metodus, taikymus, perspektyvas. Taip pat bus supažindinami su genų raišką slopinančių RNR molekulių taikymai, genų raiškos tyrimo metodais, mikrogardelių technologijomis, kamieninių ląstelių technologijomis ir perspektyvomis, kaulų čiulpų transplantacijos technologijomis, dirbtinio apvaisinimo būdais, prenatalinės diagnostikos metodais.

Short course annotation in English

The general objective of the course is to provide a one semester overview of modern biotechnology applications for medicine. During the course students will be introduced with methods and new developments of gene therapy, its application and perspectives. In addition student will be presented with methods for evaluation of gene expression, microarray technologies, interfering RNA application, stem cell technologies and perspectives. Special attention will be given to technologies of bone marrow transplantation artificial insemination and methods for prenatal diagnostics.

Prerequisites for entering the course

Cell biology, General genetics, Biochemistry, Molecular biology, Biophysics

Course aim

The aim of the course is to provide an interdisciplinary knowledge of scientific achievements, developing methodologies and perspectives in the field of biotechnology and its applications in medicine.

Links between course outcomes and criteria of learning achievement evaluation

Course outcomes	Criteria of learning achievement evaluation	
To be able to explain main biotechnology for	The main biotechnology for medicine terms	
medicine terms, and to be able to associate them	described and associated with various	
with various biotechnological and medical areas.	biotechnology and medical areas.	
To be able to describe gene therapy methods and	Ability to use acquired knowledge of gene therapy	
perspective in medicine.	methods	
To be able to describe stem cell technology and	Ability to use acquired knowledge of stem cell	
perspectives, bone marrow transplantation, artificial	technology and perspectives, bone marrow	
insemination	transplantation, artificial insemination	
To be able to describe antibody engineering, genetic	Ability to use acquired knowledge of antibody	
immunization	engineering, genetic immunization	

To be able to understand biotechnological products	Ability to use acquired knowledge of biotechnological		
manufacture methods and rational drug	products manufacture methods and rational drug		
development principles	development principles		

Content (topics)

- 1. Biotechnology in medicine and its relationship to other sciences. Congenital and acquired diseases and biotechnological approaches to their treatment.
- 2. Gene therapy methods. Viral vectors.
- 3. Non-viral vectors. Electroporation and sonoporation application for gene therapy.
- 4. Nervous system gene therapy. Cancer gene therapy.
- 5. Anti sensor development and its application in medicine. The usage of si-RNA and mi-RNA. Transgenic animal production and use in biomedicine.
- 6. Gene expression methods. Microarray technology and its application in medicine.
- 7. Modern microscopy and fluorescent in situ hybridization. FISH methodology. FISH adapting the methods of diagnosis, bio-markers decisions.
- 8. Regenerative medicine. Stem cells therapy. Stem cell banks.
- 9. Bone marrow transplant types, present and prospects. Bone marrow transplantation in Lithuania. Stem cell populations after transplantation setting cutting-edge technology.
- 10. Gender causes of infertility. Artificial insemination. Artificial insemination techniques. Prenatal diagnostic methods. Prenatal genetic counseling essence and necessity.
- 11. Antibody Engineering. Genetic immunization.
- 12. Biotechnological methods of production antibiotics, vaccines and other medicinal substances.
- 13. Short repetitive sequences analysis methods application on chimerical analysis and the identification of individuals
- 14. Genetically modified organisms and plant use in biotechnology in medicine.
- 15. Recent biotechnology advances and their application prospects.

Practical work (contents):

Plasmid with marked gene propagation; plasmid production, concentration, testig of concentration and purity; gene transfer into cells in vitro using electroporation; gene expression efficiency; gene transfer into cells in vitro using sonoporation; transfection efficiency rating in vitro using the PCR method; identification and analysis of mutations; laboratory test response relation of the patient's clinic; individual identification; Family relationship identification, analysis and comparison

Distribution of workload for students (contact and independent work hours)

Lectures – 45 hours, laboratory work– 15 hours, examination – 3 hours, individual work – 97 hours.

Structure of cumulative score and value of its constituent parts

Final assessment sums the assessments of written final examination (50%), written mid-term examination (30%) and assessment of laboratory works (20%).

No.	No. Publication year	Authors of publication and title	Publishing house	Number of copies in			
				University	Self-study	Other	
				library	rooms	libraries	
	Basic materials						
1.	2004	A. Thomson & J.McWhir. Gene targeting and embryonic stem cells	London ; New York [N.Y.] : Bios Scientific	1			
2.	2000	J. M. Walker and R.	Cambridge :	1			
		Rapley. Molecular	Royal Society				

Recommended reference materials

		biology and	of Chemistry		
		biotechnology			
3.	1998	M. Junker-Kenny and L. S. Cahill. The ethics of genetic engineering.	London : SCM Press ; Maryknoll (N.Y.) : Orbis Books	1	
4.	2011	A. Khan. Biotechnology Fundamentals	CRC Press		
5.	2000	S.N.Jogdand. Medical Biotechnology	Himalaya		

Course programme designed by Dr. Karolina Čepurnienė, Faculty of Natural Sciences, Department of Biology