Course code	Course group	Volume in ECTS credits	Course hours
BIO 3012	С	4	

Course type (compulsory or optional)	Compulsory
Course level (study cycle)	Bachelor
Semester the course is delivered	Autumn (3)
Study form (face-to-face or distant)	Face-to-face

Course title in Lithuanian

AUGALŲ EKOLOGIJA

Course title in English

PLANT ECOLOGY

Short course annotation in Lithuanian

Negyvieji ir gyvieji veiksniai augalų aplinkoje. Augalai – aplinkos atspindys molekuliniamebiocheminiame, rūšiniame, ekosistemos lygmenyse. Kerpių, samanų, sporinių induočių, plikasėklių, gaubtasėklių atsakas užterštai aplinkai. Vidurūšiniai, tarprūšiniai augalų santykiai. Invazinės rūšys. Pasaulio klimato kaita ir augalai. Žmogaus įtaka anglies apytakai ir pasaulio klimatui. Žemės naudojimo kaitos reikšmė augalams. Augalų įvairovė ir žmonių veiklos įtaka pasaulio biologinei įvairovei.

Short course annotation in English

Natural abiotic (climatic and edaphic), biotic and anthropogenic factors of the environment of plan molecular, individual and community level. Interaction of plants with physical and biological environme Phytoindication of pollution. Climate change effects on plants. Distribution and abundance of plan Population ecology. Community ecology. Ecosystems, plant diversity and conservation. Laboratory we includes analyses of morphological-physiological adaptations of plants to surrounding environment

Prerequisites for entering the course

General Biology BIO1001; Fungy, Algae and Plant Morphology and Systematics; BIO1002; Field work in Botany BIO1003

Course aim

Course aims to introduce students to the main problems of nowadays Plant Ecology, methods, achievements, diversity of plant habitats, temporal and spatial variations of environment

Links between course outcomes and criteria of learning achievement evaluation

Course outcomes	Criteria of learning achievement evaluation			
Will obtain knowledge about main environmental	Students will know main concepts, terminology and			
factors, methods of investigation, history,	methods of the plant ecology; understand basic			
nowadays trends in ecology; environment as	principles of behaviour plants in various changing			
stress factor; abiotic and biotic factors, causing	conditions of environment, will distinguish main			
stress; reception and transmission of stress; light	effects of different environmental stressors – acid rain,			
(visible light, UV), temperature effects on plants,	fluorides, ammonia, nitrogen oxides, elevated carbon			
temperature borders limiting life; heat. frost,	dioxide, methane, heavy metals, aluminium, organic			
cold, oxygen deficiency, water deficiency, salt	pollutants. Interactions between plants, plant and			
effects on plants; adaptations to salt excess,	animal interactions			
heavy metal, aluminium, xenobiotics influence				
on plants, stress caused by biotic factors				
Will understand: terminology applied in	Students will be able to understand the essentials of			
ecological science, the most important problems	ecological science, properties of organism environment			
of the ecology in the past, present and future,	on the basis of three-hierarchial structure; the origin of			
complexity of the plant environment, possible	form and function diversity of the plants growing in			
combined effects of pollutant mixtures, stress	various contrasting environmental conditions,			

concept, stress mitigation possibilities, main	complexity of relationships between organisms; will			
environment factors influencing exsistence of	understand biogeochemical cycles of the main			
individuals, species, communities, forecats of	elements important for plants, will understand global			
environment quality in the future, to distinguish	ecology problems, tasks, perpectives			
environment peculiarities of Europe when				
compared to other continents, to know				
perspectives of the world ecology, to forecast				
environment quality of the future				
Will be able to define environmental factors,	Students will acquire the primary skills in using			
according to various criteria, to select proper	various methods in ecological and environmental			
groups of organisms, model plants to detect	studies, selecting indicatory species to test effect of			
adverse effects of environment, to select proper	different stressors. Students will be able to do research			
methods, to evaluate strength of effects of	at the laboratories, analysing plant features related to			
environmental factors according to limit values	environment, to analyse biotic interactions in the crop			
of deposition and critical concentrations of air	field and planted forests, also wild environment; will			
pollutants, to distinguish between human effects	be able to pick up the most important trends and select modern methods			
and naturally occuring stressors, to find out the most important for plants factors, plant role in	modern methods			
the main element cycling, to explain plant-plant				
interactions, plant and animal interactions, to				
analyze importance of ecological problems, to				
distinguish problems of local, regional and				
world significance				
Content (topics)				
Lectures				
1. Introduction to Plant Ecology. Definition and subd	ivisions of Plant Ecology history methods			
2. Environment as a stress factor. Stress concept. Spec				
3. Light. Temperature				
4. Insufficient supply with oxygen. Water deficiency				
5. Salt stress. Heavy metals. Aluminium. Xenobiotics	3			
6. Stress caused by biotic factors. Allelopathy				
7. Autecology. Atmosphere as an environment factor				
8. Acidic pollutants				
9. Plant and light				
10. Combined effects of several environment factors on plants				
11. Properties of ecosystems. Subdivisions of ecosystems and borders. Biogeochemical cycles				
12. Nitrogen cycle and transformations of anthropogenic origin				
13. Carbon cycling and its anthropogenic transformat				
14. Synchorology. Synecology				
	resources. Human impact on environment quality,			
biodiversity	1 1 57			
Laboratory works				
1. Shadow and opened light plant adaptations				
2. Plant requirements to nitrogen				
3. Adaptations to drought				
4. Adaptations to water excess				
5. Assessment of barrier organ quality				
6. Pollen structure and dispersal type				
7. Structural adaptations of various types of seed and				
Distribution of workload for students (contact an	d independent work hours)			
Lectures – 45 hours, practicals (seminars and laboratory work) – 22.5 h, consultations, exam - 5,5 hours,				

Lectures – 45 hours, practicals (seminars and laboratory work) – 22.5 h, consultations, exam - 5,5 hours, individual work – 47 hours (it includes essay, preparations for practicals, colloquium, exam, etc.). Totally

120 hours.

Structure of cumulative score and value of its constituent parts

Colloquium – 17 %, practicals – 23 %, essay – 10 %, exam – 50 % of the total score

		ded reference materials		I		
No	Year of issue	Authors, title, pul	Number of the books			
				Library of the university	Methodical cabinets	Other libraries
			asic material	1		
1.	2011	E. Kupčinskienė. Aplinkos fitoindikacija [Phytoindication of Environment]	Kaunas	40		
2.	2005	Schulze E.D., Beck E., Muller- Hohenstein K. Plant Ecology	Springer	1		
3	1997	Crawley M.J. Plant Ecology	Blackwell Science, Oxford			
4.	1998	Bazzaz, F.A. Plants in Changing Environments: linking physiological, population, and community ecology	Cambridge, Cambridge University Press	1		
5.	1988	Harborne J.B. Introduction to Ecological Biochemistry	Academic Press, London	1		
6.	1990	Begon M., Townsend C.R., Harper J.L. Ecology: from Individuals to Ecosystems	Blackwell Publishing	1		
7.	2008	Grime J.P., Hodgson J.G., Hunt R Comparative Plant Ecology. A functional approach to common British species	2 nd ed. Castlepoint Press		1	
8.	1991	Ellenberg H., Weber H.E., Düll	Scripta Geobotanica, 18, Gottingen		3	
		Supple	mentary materials			
1.	2006	Groom M.J., Meffe G.K., Carroll C.R. Principles of Conservation Biology. 3 rd ed.	Sinauer Associates, Inc. Sunderland, Massachusetts	1		
2.	1980	J. Dagys Augalų ekologija [Plant Ecology]	Mokslas, Vilnius		2	
3.	2003	Ingrouille M.J., Eddie B. Plants: Diversity and Evolution	Cambridge University Press, Cambridge		1	
4.	1989	Harborne J.B. Introduction to Ecological Biochemistry	3 rd ed. Academic Press, San Diego			

Course programme designed by

Eugenija Kupčinskienė, Faculty of Nature Sciences, Department of Biology