COURSE DESCRIPTION (Group C)

Course code	Course group	Volume in ECTS credits	Course valid from	Course valid to	Reg. No.
BBK 3104	С	5			

Course type (compulsory or optional)	Compulsory
Course level (study cycle)	Bachelor
Semester the course is delivered	5, Autumn
Study form (face-to-face or distant)	Face-to-face

Course title in Lithuanian

BIOORGANINĖ IR POLIMERŲ CHEMIJA

Course title in English

BIOORGANIC AND POLYMER CHEMISTRY

Short course annotation in Lithuanian (up to 500 characters)

Dalyko dėstymo metu supažindinama su polimerų chemijos raida, pagrindiniais polimerų chemijos terminais, polimerų klasifikacija ir nomenklatūra. Pateikiami pagrindiniai polimerų sintezės metodai, makromolekulių reakcijos, mechaninės savybės. Supažindinama su polimerų struktūros ypatumais. Taip pat, bus pateikti pagrindiniai gamtiniai polimerai, jų klasifikacija, struktūra, izomerija, cheminės savybės bei jų modifikavimo būdai.

Short course annotation in English (up to 500 characters)

The course provides fundamental knowledge of polymer evolution, main expressions of polymer chemistry, classification of polymers, nomenclature. The main methods of polymer synthesis and macromolecular reactions, mechanical properties will be presented. The course presents peculiarities of polymer structure. The main natural polymers, their classification, structure, isomerism, chemical properties and modification will be also presented.

Prerequisites for entering the course

Organic and Physical Chemistry

Course aim

Introduction to the basics of bioorganic and polymer chemistry

Links between study programme outcomes, course outcomes and criteria of learning achievement evaluation

Study programme	Course outcomes	Criteria of learning achievement evaluation		
outcomes	Course outcomes			
Knowledge of	1.To know the evolution stages	Students will know the evolution stages of		
Chemistry: terminology,	of polymer chemistry, the main	polymer chemistry, the main expressions,		
conventions and units;	expressions, classification and	classification and nomenclature of polymers.		
The groups of organic	nomenclature of polymers. To	To name polymers		
compounds of organic	name polymers			
compounds synthesis	2.Define macromolecules	Students will define macromolecules		
and properties of	structure, explain	structure, explain macromolecules coupling		
organic compounds	macromolecules coupling	rules, explain macromolecules structure		
reaction machanisms	rules. Explain macromolecules	dependence of chemical and physical		
reaction mechanisms,	structure dependence of	properties		
stereochemistry,	chemical and physical			
structure and properties	properties			
of natural compounds;	3.Evaluate the factors influence	Students will evaluate the factors influence		
Skills of safe handling of	on chain flexibility, explain the	on chain flexibility, explain the differences		
chemicals and instruments,	differences of conformation	of conformation and configuration. Will		
skills of standard	and configuration. Evaluate	evaluate conditions of reactions influence to		
laboratory procedures.	conditions of reactions	these parameters		
	influence to these parameters			

г				
	4. To find out polymer state	Students find out polymer state peculiarities		
	peculiarities and structure	and structure differences depending on		
	differences depending on	polymer state		
	polymer state			
	5.To find out mechanical	Students find out mechanical properties		
	properties dependence on	dependence on polymer structure, fillers.		
	polymer structure, fillers.	Will comprehend dependence of mechanical,		
	Comprehend dependence of	optical and electric properties on		
	mechanical, optical and electric	supplements		
	properties on supplements	11		
	6.Compare diluted,	Students will compare diluted, concentrated		
	concentrated polymer	polymer solutions, polymer gels		
	solutions, polymer gels			
	7.To calculate and compare	Will calculate and compare averages of		
	averages of polymer mass,	polymer mass, polydispersity index.		
	polydispersity index.			
	8.Comprehend the main	Students will comprehend the main methods		
	methods of polymer synthesis	of polymer synthesis and macromolecular		
	and macromolecular reactions.	reactions. Will write reactions		
	Write reactions			
-	9.Be able classify and to name	Students be able to classify and name		
	natural polymers.	natural polymers		
	10.Be able to identify isomers	Students be able to identify isomers		
	configuration of natural	configuration of natural polymers		
	polymers			
-	11.To know chemical	Students will know chemical properties,		
	properties, modification and	modification and application of natural		
	application of natural polymers	polymers		
Ī	12.To know synthesis and	Students will know synthesis and application		
	application of cyclic natural	of cyclic natural polymers		
	polymers			
Link between course outcor	nes and content			

Course outcomes	Content (topics)	
1.To know the evolution stages of polymer chemistry, the	1. Evolution of polymer chemistry, the main	
main expressions, classification and nomenclature of	expressions.	
polymers. To name polymers	2. Classification and nomenclature of	
	polymers.	
2.Define macromolecules structure, explain macromolecules	3. Structure of macromolecules.	
coupling rules. Explain macromolecules structure		
dependence of chemical and physical properties		
3.Evaluate the factors influence on chain flexibility, explain	4. Isomers.	
the differences of conformation and configuration. Evaluate	5. Conformation and configuration of	
conditions of reactions influence to these parameters	macromolecules.	
4. To find out polymer state peculiarities and structure	6. Polymer states and structure.	
differences depending on polymer state		
5.To find out mechanical properties dependence on polymer	7. Mechanical, optical and electric properties	
structure, fillers. Comprehend dependence of mechanical,	of polymers.	
optical and electric properties on supplements		
6.Compare diluted, concentrated polymer solutions, polymer	8. Polymer solutions.	
gels		
7.To calculate and compare averages of polymer mass,	9. Polymer molecular weight and its	
polydispersity index.	determination methods.	
8.Comprehend the main methods of polymer synthesis and	10. Synthesis of polymers.	
macromolecular reactions. Write reactions		

9.Be able to classify and to name natural polymers.	11. Polymer reactions.
10.Be able to identify isomers configuration of natural	12. Classification and nomenclature of
polymers	natural polymers.
11.To know chemical properties, modification and	13. Isomerism of natural polymers.
application of natural polymers	
12. To know synthesis and application of cyclic natural	14. Chemical properties, modification and
polymers	application of natural polymers.
	15. Cyclic natural polymers.

Study (teaching and learning) methods

Teaching methods: explaining represented matter; exemplification; formulation and explaining of problematic exercises and practical tasks; consulting.

Learning methods: discussions; analysing of problematic exercises; taking counsel; literature analysis; learning of lectures and practise classes matters; performance of practical tasks; performance of laboratory works; independent students work: search and analysis of information concerning studying object.

Methods of learning achievement assessment

Interview in written form, performance of practical tasks and works.

Distribution of workload for students (contact and independent work hours)			
Lectures	37,5 hours		
Laboratory work	30 hours		
Individual students work	75,5 hours		
Knowledge test	7 hours		
Total:	150 hours		

Structure of cumulative score and value of its constituent parts

Mid-term exam - 20 %, laboratory work (report and test) - 15 %, test - 15 %, final exam - 50 %

Recommended reference materials

No	Dublicatio	Authons of nublication and		N	Number of copies in		
110.	n year title		Publishing house	University library	Self-study rooms	Other libraries	
		В	asic materials	<i>.</i>			
1.	2002	V. Laurinavičius Organinė ir bioorganinė chemija	Vilnius. Mokslo ir enciklopedijų leidykla	45	2		
2.	2008	J. Kadziauskas Biochemijos pagrindai	Vilnius : Vilniaus universiteto leidykla	64	1		
3.	1999	V.Mildažienė, J,Kadziauskas, R,Daugelavičius, V.Laurinavičius, Z.Naučienė, D.Bironaitė Struktūrinė biochemija	Kaunas : Vytauto Didžiojo universitetas	64	1		
4.	2001	A. Žemaitaitis Polimerų fizika ir chemija.	"Technologija", Kaunas	1	1		

Course programme designed by

Assoc. Prof.. dr. Simona Sutkuvienė, Department of Biochemistry, Faculty of Natural Sciences